Document Type : Original Article

Authors

1 Jarallah German Specialized Clinic

2 Kuwait German Urology Unit(KGUU)

Abstract

Chemokine CXCL9 is a member of the CXC family and has an important role in the chemotaxis of immune cells. In this study,  changes in the expression of gene CXCL9 in prostate cancer and adjacent healthy tissue was investigated. The prostate cancer tissues and the corresponding adjacent tissues used in this study were collected from 30 patients. qRT-PCR was performed for evaluated changes in the expression of gene CXCL9 in prostate cancer and adjacent healthy tissue. The mRNA levels of CXCL9 in prostate cancer samples was greater than normal samples (P=0.04), The results suggested that the mRNA expression levels of CXCL9 were positively associated with prostate cancer.

Keywords

1. Klemm, F., and J. A. Joyce. 2015. Microenvironmental 
regulation of therapeutic response in cancer. Trends Cell 
Biol. 25: 198– 213.
2. Muller, M., S. Carter, M. J. Hofer, and I. L.Campbell. 2010. Review: the chemokine receptor CXCR3 and 
its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity–a 
tale of conflict and conundrum. Neuropathol. Appl. 
Neurobiol. 36: 368– 387.
3. Smit, M. J., P. Verdijk, E. M. van der Raaij‐Helmer, M. Navis, P. 
J. Hensbergen, R. Leurs, et al. 2003. CXCR3‐mediated chemotaxis 
of human T cells is regulated by a Gi‐ and phospholipase C‐
dependent pathway and not via activation of MEK/p44/p42 
MAPK nor Akt/PI‐3 kinase. Blood 102: 1959– 1965.
4. Muthuswamy, R., J. Urban, J. J. Lee, T. A. Reinhart, D. Bartlett, 
and P. Kalinski. 2008. Ability of mature dendritic cells to interact 
with regulatory T cells is imprinted during maturation. Cancer 
Res. 68: 5972– 5978.
5. Ikeda, A., N. Aoki, M. Kido, S. Iwamoto, H. Nishiura, R. 
Maruoka, et al. 2014. Progression of autoimmune hepatitis is 
mediated by IL‐18‐producing dendritic cells and hepatic CXCL9 
expression in mice. Hepatology 60: 224– 236.
6. Tworek, D., P. Kuna, W. Mlynarski, P. Gorski, T. Pietras, 
and A. Antczak. 2013. MIG (CXCL9), IP‐10 (CXCL10) and I‐
TAC (CXCL11) concentrations after nasal allergen challenge in 
patients with allergic rhinitis. Arc. Med. Sci. 9: 849– 853.
7. Holt, A. P., E. L. Haughton, P. F. Lalor, A. Filer, C. D. 
Buckley, and D. H. Adams. 2009. Liver myofibroblasts 
regulate infiltration and positioning of lymphocytes in human 
liver. Gastroenterology 136: 705– 714.
8. Antonelli, A., S. M. Ferrari, P. Fallahi, S. Frascerra, E. Santini, S. 
S. Franceschini, et al. 2009. Monokine induced by interferon 
gamma (IFNgamma) (CXCL9) and IFNgamma inducible T‐cell 
alpha‐chemoattractant (CXCL11) involvement in Graves’ disease 
and ophthalmopathy: modulation by peroxisome proliferator‐
activated receptor‐gamma agonists. J. Clin. Endocrinol. 
Metabol. 94: 1803– 1809.
9. Vandercappellen, J., J. Van Damme, and S. Struyf. 2008. The 
role of CXC chemokines and their receptors in cancer. Cancer 
Lett. 267: 226– 244.
10. Hiroi, M., and Y. Ohmori. 2003. The transcriptional 
coactivator CREB‐binding protein cooperates with STAT1 and 
NF‐kappa B for synergistic transcriptional activation of the CXC 
ligand 9/monokine induced by interferon‐gamma gene. J. Biol. 
Chem. 278: 651– 660.
11. Staab, J., C. Herrmann‐Lingen, and T. Meyer. 2013. Clinically 
relevant dimer interface mutants of STAT1 transcription factor 
exhibit differential gene expression. PLoS ONE 8: e69903.
12. Chung, E. Y., B. H. Kim, J. T. Hong, C. K. Lee, B. Ahn, S. 
Y. Nam, et al. 2011. Resveratrol down‐regulates interferon‐
gamma‐inducible inflammatory genes in macrophages: 
molecular mechanism via decreased STAT‐1 activation. J. Nutr. 
Biochem. 22: 902– 909.
13. Chung, E. Y., E. Roh, J. A. Kwak, H. S. Lee, S. H. Lee, C. K. 
Lee, et al. 2010. alpha‐Viniferin suppresses the signal transducer 
and activation of transcription‐1 (STAT‐1)‐inducible inflammatory 
genes in interferon‐gamma‐stimulated macrophages.J. Pharmacol. 
Sci. 112: 405– 414.
14. Jauregui, C. E., Q. Wang, C. J. Wright, H. Takeuchi, S. M. 
Uriarte, and R. J. Lamont. 2013. Suppression of T‐cell chemokines 
by Porphyromonas gingivalis. Infect. Immun. 81: 2288– 2295.
15. Kim, W. H., F. Hong, S. Radaeva, B. Jaruga, S. Fan, and B. 
Gao. 2003. STAT1 plays an essential role in LPS/D‐galactosamine‐
induced liver apoptosis and injury. Am. J. Physiol. Gastrointest. 
Liver Physiol. 285: G761– G768.
16. Mariman, R., F. Tielen, F. Koning, and L. 
Nagelkerken. 2014. The probiotic mixture VSL#3 dampens 
LPS‐induced chemokine expression in human dendritic cells by 
inhibition of STAT‐1 phosphorylation. PLoS ONE 9: e115676.
17. Basset, L., S. Chevalier, Y. Danger, M. I. Arshad, C. Piquet‐
Pellorce, H. Gascan, et al. 2015. Interleukin‐27 and IFNgamma 
regulate the expression of CXCL9, CXCL10, and CXCL11 in 
hepatitis. J. Mol. Med. 93: 1355– 1367.
18. Xia, L. M., W. J. Huang, J. G. Wu, Y. B. Yang, Q. Zhang, Z. 
Z. Zhou, et al. 2009. HBx protein induces expression of MIG 
and increases migration of leukocytes through activation of NF‐
kappaB. Virology 385: 335– 342.
19. Ellis, S. L., V. Gysbers, P. M. Manders, W. Li, M. J. Hofer, M. 
Muller, et al. 2010. The cell‐specific induction of CXC chemokine 
ligand 9 mediated by IFN‐gamma in microglia of the central 
nervous system is determined by the myeloid transcription factor 
PU.1. J. Immunol. 185: 1864– 1877.
20. Kanno, Y., B. Z. Levi, T. Tamura, and K. Ozato. 2005. Immune 
cell‐specific amplification of interferon signaling by the IRF‐4/8‐
PU.1 complex. J. Interferon Cytokine Res. 25: 770– 779.