Document Type : Review Article

Authors

1 Department of Biology, Gaziantep University, Gaziantep, Turkey Farabi Molecular Laboratory, Irbil, Iraq

2 Department of Biology, Gaziantep University, Gaziantep, Turkey

Abstract

One of the key molecular mechanisms contributing to the metastatic progression is epithelial to mesenchymal transition (EMT), which drives invasion and migration of various cancer including breast cancer.During tumorigenesis, changes in EMT regulatory pathways lead to a loss of cellular adhesions, changes in the polarization of the cell and cytoskeleton, detachment, migration, intra-vasation, and survival in the vascular system; extravasation, and finally, metastasis.EMT is largely mediated by a core set of EMT-activating transcription factors. The master regulators of the EMT include many pathways, however the primary mediators of the EMT include signaling through TGF-, Notch and Wnt.  The role of EMT in breast cancer has  been demonstrated via numerous in vitro studies in  normal and malignant mammary epithelial cells and via in vivo studies using mouse models of breast cancers. Studying the regulatory pathways of the EMT process can be used as a tool for cancer monitoring ,treatment and possible direct targets for new-combination anticancer personalized medicine.

Keywords

  1. Prat, A.; Perou, C.M. Desconstructing the molecular portraits of
    breast cancer. Mol. Oncol. 2011, 5, 5–23.
    2. Taube, J.H.; Herschkowitz, J.I.; Komurov, K.; Zhou, A.Y.;
    Gupta, S.; Yang, J.; Hartwell, K.; Onder, T.T.; Gupta, P.B.;
    Evans, K.W.; et al. Core epithelial-to-mesenchymal transition
    interactome gene-expression signature is associated with claudin-
    low and metaplastic breast cancer subtypes. Proc. Natl. Acad. Sci.
    USA 2010, 107, 15449–15454.
    3. Micalizzi, D.; Ford, H. Epithelial to mesenchymal transition in
    development of cancer. Future Oncol. 2009, 8,1129–1143. J. Clin.
    Med. 2016, 5, 6512 of 14
    4. Scimeca, M.; Antonacci, C.; Colombo, D.; Bonfiglio, R.;
    Buonomo, O.C.; Bonanno, E. Emerging prognostic markers
    related to mesenchymal characteristics of poorly differentiated
    breast cancers. Tumor Biol. 2016, 37, 5427–5435.
    5. Polyak, K.; Weinberg, R.A. Transitions between epithelial and
    mesenchymal states: Acquisition of malignant and stem cell traits.
    Nat. Rev. 2009, 9, 265–273.
    6. Taylor, M.A.; Parvani, J.G.; Schiemann, W.P. The
    pathophysiology of epithelial-mesenchymal transition induced by
    transforming growth factor- in normal and malignant mammary
    epithelial cells. J. Mammary Gland Biol. Neoplasia 2010, 15,
    169–190.
    7. Sarrió, D.; Rodriguez-Pinilla, S.M.; Hardisson, D.; Cano, A.;
    Moreno-Bueno, G.; Palacios, J.Epithelial-Mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res.
    2008, 68, 989–997.
    8. Lien, H.C.; Hsiao, Y.H.; Lin, Y.S.; Yao, Y.T.; Juan, H.F.;
    Kuo, W.H.; Hung, M.C.; Chang, K.J.; Hsieh, F.J. Molecular
    signatures of metaplastic carcinoma of the breast by large-scale
    transcriptional profiling: Identification of genes potentially related
    to epithelial-mesenchymal transition. Oncogene 2007, 26, 7859–
    7871.
    9. Al Saleh, S.; Al Mulla, F.; Luqmani, Y.A. Estrogen receptor
    silencing induces epithelial to mesenchymal transition in human
    breast cancer cells. PLoS ONE 2011, 6, e20610.
    10. Pomp, V.; Leo, C.; Mauracher, A.; Korol, D.; Guo, W.; Varga,
    Z. Differential expression of epithelial-mesenchymal transition
    and stem cell markers in intrinsic subtypes of breast cancer. Breast
    Cancer Res. Treat. 2015, 154, 45–55.
    11. Czerwinska, P.; Kaminska, B. Regulation of breast cancer
    stem cell features. Contemp. Oncol. 2015, 19, A7–A15.
    12. Coradini, D.; Boracchi, P.; Ambrogi, F.; Biganzoli, E.; Oriana,
    S. Cell polarity. Epithelial-mesenchymal transition and cell-fate
    decision gene expression in ductal carcinoma in situ. Int. J. Surg.
    Oncol. 2012, 2012, 984346.
    13. Wang, Y.; Zhou, B.P. Epithelial-mesenchymal transition—A
    hallmark of breast cancer metastasis. Cancer Hallm. 2013, 1,
    38–49.
    14. Knudsen, E.S.; Ertel, A.; Davicioni, E.; Kline, J.; Schwartz,
    G.F.; Witkiewicz, A.K. Progression of ductal carcinoma in situ
    to invasive breast cancer is associated with gene expression
    programs of EMT and myoepithelial. Breast Cancer Res. Treat.
    2012, 133, 1009–1024.
    15. Bouris, P.; Skandalis, S.S.; Piperigkou, Z.; Afratis, N.;
    Karamanou, K.; Aletras, A.J.; Moustakas, A.; Theocharis, A.D.;
    Karamanos, N.K. Estrogen receptor alpha mediates epithelial to
    mesenchymal transition, expression of specific matrix effectors
    and functional properties of breast cancer cells. Matrix Biol. 2015,
    43, 42–60.
    16. Radisky, E.; Radisky, D. Matrix metalloproteinase-induced
    epithelial-mesenchymal transition in breast cancer. J. Mammary
    Gland Biol. Neoplasia 2012, 15, 201–212.
    17. Cichon, M.A.; Nelson, C.M.; Radisky, D.C. Regulation of
    epithelial-mesenchymal transition in breast cancer cells by cell
    contact and adhesion. Cancer Inform. 2015, 14 (Suppl. 3), 1–13.
    18. Faronato, M.; Nguyen, V.T.; Patten, D.K.; Lombardo, Y.; Steel,
    J.H.; Patel, N.; Woodley, L.; Shousha, S.; Pruneri, G.; Coombes,
    R.C.; et al. DMXL2 drives epithelial to mesenchymal transition
    in hormonal therapy resistant breast cancer through notch hyper-
    activation. Oncotarget 2015, 6, 22467–22479.
    19. Fischer, K.; Durrans, A.; Lee, S.; Sheng, J.; Li, F.; Wong, S.T.;
    Choi, H.; El Rayes, T.; Ryu, S.; Troeger, J.; et al. Epithelial-to-
    mesenchymal transition is not required for lung metastasis but
    contributes to chemoresistance. Nature 2015, 527, 472–476.
    20. Lombaerts, M.; van Wezel, T.; Philippo, K.; Dierssen, J.W.;
    Zimmerman, R.M.; Oosting, J.; van Eijk, R.; Eilers, P.H.; van
    de Water, B.; Cornelisse, C.J.; et al. E-cadherin transcriptional
    downregulation by promoter methylation but not mutation is
    related to epithelial-to-mesenchymal transition in breast cancer
    cell lines. Br. J. Cancer 2006, 94, 661–671.
    21. Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie,
    S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth,
    C.; et al. Comprehensive molecular portraits of invasive lobular
    breast cancer. Cell 2015, 163, 506–519 J. Clin. Med. 2016, 5, 65
    13 of 14
    22. Onder, T.T.; Gupta, P.B.; Mani, S.A.; Yang, J.; Lander, E.S.;
    Weinberg, R.A. Loss of E-cadherin promotes metastasis via
    multiple downstream transcriptional pathways. Cancer Res. 2008,
    68, 3645–3654.
    23. Thomson, S.; Petti, F.; Sujka-Kwok, I.; Mercado, P.; Bean,
    J.; Monaghan, M.; Seymour, S.L.; Argast, G.M.; Epstein, D.M.;
    Haley, J.D. A system view of epithelial-mesenchymal transition
    signaling states. Clin. Exp. Metastasis 2011, 28, 137–155.
    [CrossRef] [PubMed]
    24. Abdulla, T.; Luna-Zurita, L.; de la Pompa, J.L.; Schleich, J.M.;
    Summers, R. Epithelial to mesenchymal transition—The roles of
    cell morphology, labile adhesion and junctional coupling. Comput
    Methods Progr. Biomed. 2013.
    25. Katz, E.; Dubois-Marshall, S.; Sims, A.H.; Gautier, P.;
    Caldwell, H.; Meehan, R.R.; Harrison, D.J. An in vitro model that
    recapitulates the epithelial to mesenchymal transition (EMT) in
    human breast cancer. PLoS ONE 2001, 6, e17083.
    26. Nelson, W.J.; Nusse, R. Convergence of Wnt, beta-catenin,
    and cadherin pathways. Science 2004, 303, 1483–1487.
    27. Geyer, F.C.; Lacroix-Triki, M.; Savage, K.; Arnedos, M.;
    Lambros, M.B.; MacKay, A.; Natrajan, R.; Reis-Filho, J.S.
    -catenin pathway activation in breast cancer is associated with
    triple-negative phenotype but not with CTNNB1 mutation. Mod.
    Pathol. 2011, 24, 209–231.
    28. Mukherjee, N.; Panda, C. Subtype-specific alterations of
    the Wnt signaling pathway in breast cancer. Clin. Progn. Signif.
    Cancer Sci. 2012, 103, 210–220.
    29. Li, Y.; Wang, Z. Regulation of EMT by Notch signaling
    pathway in tumor progression. Curr. Cancer Drug Targets 2013,
    13, 957–962.
    30. Farnie, G.; Clarke, R. Mammary stem cells and breast cancer—
    Role of Notch signaling. Stem Cell Rev. 2007, 3, 169–175.
    31. Yuan, X.; Zhang, M.; Wu, H.; Xu, H.; Han, N.; Chu, Q.;
    Yu, S.; Chen, Y.; Wu, K. Expression of Notch 1 correlates with
    breast cancer progression and prognosis. PLoS ONE 2015, 10,
    e0131689.
    32. Liu, Z.J.; Semenza, G.L.; Zhang, H.F. Hypoxia-inducible
    factor 1 and breast cancer metastasis. Biomed. Biotechnol. 2015,
    16, 32–43.
    33. Aiwei, Y.; Kieber-Emons, T. Adipocyte hypoxia causes
    epithelial to mesenchymal transition—Related gene expression
    and estrogen receptor-negative phenotype in breast cancer cells.
    Oncol. Rep. 2015, 33, 2689–2694.
    34. Ho, M.Y.; Tang, S.J.; Chuang, M.J.; Cha,
    T.L.; Li, J.Y.; Sun, G.H.; Sun, K.H. TNF-
    induces epithelial-mesenchymal transition of renal cell carcinoma
    cells via a GSK3-dependent mechanism. Mol. Cancer Res. 2012,
    10, 1109–1119.
    35. Li, C.W.; Xia, W.; Huo, L.; Lim, S.O.; Wu, Y.; Hsu,
    J.L.; Chao, C.H.; Yamaguchi, H.; Yang, N.K.; Ding, Q.;
    et al. Epithelial-mesenchymal transition induced by TNF-
    requires NF-B-mediated transcriptional upregulation of Twist 1.
    Cancer Res. 2012, 72, 1290–1300.
    36. Iorio, M.; Ferracin, M.; Liu, C.G.; Veronese, A.; Spizzo, R.;
    Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.;
    et al. MicroRNA gene expression deregulation in human breast
    cancer. Cancer Res. 2005, 65,7065–7070.
    37. Kimelman D, Xu W. β-Catenin destruction complex: insights
    and questions from a structural perspective. Oncogene. 2006
    Dec;25(57):7482-91.
    38. Creighton, C.J.; Gibbons, D.L.; Kurie, J.M. The role of
    epithelial-mesenchymal transition programming in invasion and
    metastasis: A clinical perspective. Cancer Manag. Res. 2013, 5,
    187–195.
    39. Guttilla, I.; White, B. ER , microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol.
    Metab. 2012, 3, 73–82.
    40. Yu, J.; Xie, F.; Bao, X.; Chen, W.; Xu, Q. miR-300 inhibits
    epithelial to mesenchymal transition and metastasis by targeting
    Twist in human epithelial cancer. Mol. Cancer 2014, 13, 121.
    41. Lin, Y.; Dong, C.; Zhou, B.P. Epigenetic regulation of EMT:
    The snail story. Curr. Pharm. Des. 2014, 20, 1698–1705.
    42. Sigurdsson, V.; Gudjonsson, T. Endothelial induced EMT in
    breast epithelial cells with stem cells properties. PLoS ONE 2011,
    6, e23833. J. Clin. Med. 2016, 5, 65 14 of 14
    43. Wendt, M.K.; Schiemann, W.P. Mechanisms of epithelial-
    mesenchymal transition by TGF-. Future Oncol.2009, 5, 1145–
    1168.
    44. Kalluri, R.; Wienberg, R.A. The basics of epithelial-mesen-
    chymal transition. J. Clin. Investig. 2009, 119,1420–1428.
    45. Groger, C.; Grubinger, M.; Waldhör, T.; Vierlinger, K.; Miku-
    lits, W. Meta-analysis of gene expression signatures defining the
    epithelial to mesenchymal transition during cancer progression.
    PLoS ONE 2012, 7, e51136.