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Multiple sclerosis (MS), the most common inflammatory demyelinating illness 
of the central nervous system (CNS), presents a range of clinical symptoms. The 
body’s immune system attacking myelin causes the transmission block in MS, which 
increases the electrical capacity of axons. Studies suggest that epigenetic factors 
play a part in the development of MS. Longer than 200 nucleotides in length and 
widely distributed, lncRNAs are linear RNA transcripts that cannot code for proteins. 
For instance, evidence suggests that lncRNAs are essential for a number of cellular 
functions, including immune response regulation, epithelial mesenchymal transition 
(EMT), cancer cell proliferation and metastasis, cellular homeostasis, and embryonic 
development. Epigenetic mechanisms have been proven to have a significant impact 
on the pathophysiology of MS, and their participation has revealed the function of 
lncRNAs as epigenetic regulatory molecules in molecular processes. The major 
subjects of this study have been the relationship between lncRNAs and MS, the role 
of lncRNA in the pathophysiology of the disease, and the diagnostic and prognostic 
potential of lncRNA in MS.

INTRODUCTION
Because the motor, sensory, visual, and autonomic 

systems are affected, multiple sclerosis (MS), 
a chronic inflammatory illness, manifests as 
inflammation of the central nervous system (CNS) 
(1). The main symptoms of MS are optic neuritis, 
which is an inflammation of the optic nerve; Uhthoff’s 
phenomenon, which is a temporary worsening 
or fluctuation of MS symptoms accompanied by 
an increase in body temperature; and Lhermitte’s 
phenomenon, which is an abnormal electric shock to 
the spine and back of the neck that results in radiation 
of the arm or leg. It was previously believed that MS 
is primarily a T-cell-mediated autoimmune illness 
and that the most well-known mechanisms, such as 
human leukocyte antigen (HLA) associations, are the 
result of hereditary variables known to increase the 
vulnerability of MS patients( 2). Clinical classification 
has not been altered in more than 20 years, despite 
the expansion of various therapeutic treatments based 
on disease-modifying medications. On the other 
hand, there is currently no effective treatment for 
multiple sclerosis that is in its advanced stages (3). 
Lack of understanding of the underlying processes 

causing advanced MS is probably one of the causes. 
Recent criteria have been developed to characterize 
the course of the illness because MS has a gradually 
progressing course and people with MS experience 
a wide variety of symptoms.Many immunological 
and non-immune-linked ailments, such as cancer, 
autoimmune diseases, and infectious diseases, are 
brought on by impaired immune responses; yet, the 
underlying process is still poorly understood (4). 
Long non-coding RNAs (lncRNAs) have recently 
been demonstrated to have a critical role in regulating 
the immune response, immune cell growth, and 
immune system development. But so far, only a small 
number of lncRNAs have been shown to play a role 
in controlling the immune system (5). LncRNAs’ 
capacity to regulate gene expression and their part in 
the pathophysiology of illness have just recently come 
to light. Despite the fact that studies on lncRNAs and 
their relationship to MS are still in their infancy, it 
has been noted that lncRNA-associated disorders 
in humans result from their abnormal expression.
Using their involvement in signaling networks and 
the control of gene expression as our main points 
of focus, we review the lncRNAs implicated in the 
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pathogenesis of MS in this study(6).

Structure LncRNAs
The eukaryotic genome does have an extremely 

intricate structure. The human genome does not 
encode proteins in over 98% of it. The Human Genome 
Project’s (HGP) complete identification of the human 
genome has resulted in the discovery and mapping of 
new human genes (7). High-throughput sequencing 
methods like next-generation sequencing (NGS) have 
revealed a whole new regulatory environment made 
up of lncRNAs. Currently, more than 28,000 lncRNA 
genes have been identified (8). Intergenic lncRNAs 
(transcribed entirely from introns of protein-coding 
genes), processed lncRNAs, overlapping lncRNAs 
(which contain an encoding gene in the intronic 
region), antisense lncRNAs (which are the opposite 
strand of protein-coding genes and can be both multi-
exonic and -intronic), and intronic lncRNAs have all 
been classified as lncRNAs (9). Similar to how mRNA 
is processed, the majority of lncRNAs are processed 
via 5’ end capping, splicing, 3′ end cleavage, and 
polyadenylation (10). LncRNAs have a variety of 
biological functions in the nucleus and cytoplasm and 
are polyadenylated and catalyzed by RNA polymerase 
II. LncRNAs only impose extremely light sequence 
restrictions and gain secondary and tertiary structures 
(11). As a result, it is assumed that the majority of 
lncRNAs have more than two exons. LncRNAs are 
very prevalent, varied linear RNA transcripts that are 
longer than 200 nucleotides and do not function in 
the production of proteins (12). Small open reading 
frames (sORFs), which are found in a number of 
lncRNAs but do not encode proteins, have recently 
been demonstrated to be converted into functional 
small proteins (13). LncRNAs localized in the nucleus 
interact with genomic DNA transcription factors, 
chromatin, spliceosomes, and other nuclear proteins 
that affect transcriptional and epigenetic regulation 
(14). They also play a critical role in chromatin 
organization, transcription, and post-transcriptional 
modifications. LncRNAs’ functions, like those of 
proteins, are based on where in the cell they are found 
(15). Numerous lncRNAs display distinctive nuclear 
localization patterns and appear to be involved in 
altering nuclear performance. The immune system, 
tumorgenesis, epithelial-mesenchymal transition, 
cancer cell proliferation and metastasis, cellular 
homeostasis, and even embryonic development have 
all been shown to be impacted by lncRNAs in recent 
years (16). Numerous studies have demonstrated a 
strong association between cancer-related genetic 
polymorphisms and lncRNAs as functional genomic 
components. The aetiology of autoimmune illnesses 
may also be influenced by lncRNAs, according to new 
research, which also implies that they play a significant 

role in immune system regulation(17).
Various forms of sclerosis and their causes

There are many different clinical signs of MS, which 
is an inflammatory illness and demyelinating disease in 
the CNS, particularly in the spinal cord, optic nerves, and 
brain.Multiple localized regions of myelin degradation 
inside the CNS are the pathologic characteristic of MS, 
a chronic inflammatory condition that damages the 
CNS (18). Thus, the fundamental pathophysiological 
mechanism causing the conduction block is increasing 
neurodegeneration brought on by the breakdown of 
myelin, which is the primary outcome of autoimmune 
assaults in MS. This neurodegeneration increases the 
electrical potential of axons (19). Inflammation and 
blockage of nerve conduction appear to be the most 
significant variables involved in the pathogenesis of 
MS, despite the fact that it is a complicated illness 
with an unresolved underlying mechanism in its 
pathogenesis and etiology (20). However, MS is 
at least twice as common in women as it is in men, 
suggesting that epigenetic pathways play a role in the 
development of MS (21). Genetic factors do appear 
to be the most significant components involved in the 
etiology of MS. Smoke use, sun exposure, the Epstein-
Barr virus (EBV), DNA methylation patterns, non-
coding RNAs, and epigenetic determinants, including 
histone modifications, are examples of environmental 
influences (22,23). Smoking has also been linked to an 
increased risk of MS impairment progression. Epstein-
Barr virus-related infections and MS have been linked, 
according to serologic and epidemiological research 
(24). A number of miRNAs, a family of short non-
coding RNAs that interact with LncRNAs to control 
host gene expression, are also encoded by the EBV 
genome (25). These suggested an EBV and MS 
connection that could exist. Relapsing-remitting MS is 
linked to vitamin D deficiency. Low levels of vitamin D 
lead to immunodeficiency against viral agents because 
it regulates immune system activity (26). High dosages 
of vitamin D have been proven to lower interleukin-17 
in clinical trials and observational research, but they 
have no effect on other inflammatory markers (27). 
The onset and development of MS may be impacted by 
epigenetic changes such as DNA methylation, histone 
modifications, and post-transcriptional gene silencing 
carried out by microRNAs (28). Regardless of the 
stage of the disease, there were significant changes in 
the DNA methylation profiles of T helper cells (CD4+ 
T cells), cytotoxic T cells (CD8+ T cells), and whole-
blood acquired from MS patients (29). Evidence shows 
that, in contrast to the control group, hypermethylation 
only affects cytotoxic T cells and not helper T cells 
or genomic DNA taken from the whole blood of MS 
patients(30). The methylation of CpG sites across the 
individual’s genome did not differ significantly.Genes 
associated with the immune system are expressed 
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Results of the MS and lncRNA association
Studies have shown that lncRNAs have a role in MS 

progression and control B cells and CD4+ T-helper cell 
differentiation. The growth-promoting gene known as 
BDNF (brain-derived neurotrophic factor) is 
recognized for its critical contribution to neuronal 
protection (38). The release of BDNF by neurons, T 
cells, macrophages, astrocytes, and microglia cells in 
an MS patient was demonstrated to have polytropic 
effects on immune cells that result in inflammatory 
reactions (39). It has been discovered that the lncRNA 
BDNF-AS, also known as BDNF-AS, suppresses the 
transcription of BDNF in various cells, acting as a 
negative BDNF regulator. BDNF-AS and BDNF were 
found to have a significant association in people with 
MS illnesses (40). The lncRNA known as GAS5 
(specific for growth 5) was first discovered in a research 
study to be involved in the suppression of glucocorticoid 
receptors (GRs) in MS patients (41). Glucocorticoids 
might be thought of as a possible therapeutic agent in 
inflammatory and autoimmune illnesses since they 
have a significant impact on immune system regulation 
(42).  By attaching to the DNA domains of 
glucocorticoid receptors, GAS5 can block 
glucocorticoid-dependent responses (GRs). 
Gharesouran et al. demonstrated a relationship between 
GAS5 and NR3C1, the gene that codes for the 
glucocorticoid receptor (Nuclear Receptor Subfamily 3 

Group C Member 1) (43). Additionally, Sun et al. 
demonstrated in different research that GAS5 interacts 
with PRC2 (the polycarbonate-2 suppressor complex) 
and inhibits the IRF4 transcription factor. As a result, it 
inhibits T-cell growth. Additionally, GAS5 enhances 
the polarization of the M1 microglia subgroup, which 
plays a role in MS pathogenesis, while inhibiting the 
M2 microglia polarization (44). Mammalian target of 
rapamycin complex 1 (mTORC1) is known to be 
inhibited by DNA damage-inducible transcript 4 
(DDIT4), a cytoplasmic protein that promotes DNA 
damage in response to cellular stressors. A molecule 
called mTORC1 is involved in the development and 
expansion of T lymphocytes (45). According to Zhang 
et al., lncRNA DDIT4 (lncDDIT4) and DDIT4 were 
highly expressed in MS patients. The DDIT4/mTOR 
signaling axis is a target of lncDDIT4, which has a 
significant impact on Th17 differentiation (46).
Mammals have an abundance of MALAT1, often 
referred to as NEAT2 (nuclear-enriched abundant 
transcript 2). The long noncoding RNA (lncRNA) 
MALAT1 (metastatic lung adenocarcinoma copy 1), 
which is housed in the cell nucleus, controls the 
transcription and maturation of RNA as well as the 
expression of many different genes. The neurological 
system, endocrine organs, the stomach, the bone 
marrow, and the lungs all express MALAT1 more than 
other tissues. Masoumi et al (47). discovered that 
primary activated macrophages and splenocytes 
express MALAT1 more highly. A shift in the 
differentiation of macrophages to a pro-inflammatory 
M1 phenotype, which releases a variety of inflammatory 
cytokines, has been shown in macrophages treated 
with specific MALAT1 siRNAs (48). Additionally, by 
inhibiting Treg differentiation and stimulating T cell 
differentiation to pathogenic Th1 and Th17 phenotypes, 
the reduction of MALAT1 expression in CD4+ T cells 
further increases the proliferative capacity of T cells 
(49). These results show that MALAT1 is involved in 
triggering anti-inflammatory responses. Additionally, 
they discovered that inhibiting MALAT1 increases 
CD4 T cells’ capacity for proliferation, which is 
associated with a striking increase in the number of 
Th17 cells that produce IL-17 and IFN-producing Th1 
cells while decreasing the number of Foxp3-positive 
(regulatory T lymphocyte) cells (50). MALAT1 has 
been shown to have an effect on the AS (alternative 
splicing) of pre-mRNAs in WI-38 and HeLa cells that 
control the activity of SR proteins. Its capacity to attach 
to other splicing elements, such as a number of hnRNPs 
that affect its own expression, has also been proven 
(51). The findings of a different investigation showed 
that MALAT1 regulates the expression of splicing 
factors as well as MS-related alternative splicing 
events, which strongly implies that it plays a role in 
MS pathogenesis (52). Dendritic cells (DC) express 

excessively in MS patients, according to genome-wide 
association studies (GWAS) (31). Recent genome-
wide association studies in MS have identified the 
genetic factors that contribute to this polygenic disease 
and more than 100 risk loci associated with the disease 
(32). However, every single locus, with the exception 
of the specific HLA-region genes, only marginally 
increases disease risk (33). Nucleotide polymorphisms 
work in a certain way to increase the risk of illness in 
a population, and this is how MS develops. A limited 
number of signals are linked to splicing alterations; 
however, the majority of these frequent polymorphisms 
do not impact the protein sequence of translated 
products (34). In fact, the majority are located in 
intronic regions flanking genes. So far, nothing is 
known about the basic mechanisms underlying MS 
parthenogenesis, including its pathogenesis (35). 
As a result, the molecular mechanisms involved in 
the pathophysiology of MS and their etiology are 
still poorly understood. The chance of acquiring 
MS varies from person to person, with Caucasians 
having a higher risk than Asians and Spanish people 
(36). LncRNAs may have a role in the development 
of autoimmune illnesses as they regulate a number 
of biological activities and immune responses. There 
have been recent reports linking lncRNA-containing 
microvesicles to AIDS (37).
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control the development 
of Th1/2 cells (62). Linc-MAF-4 has been presented as 

a newly discovered member of the lncRNA family that 
plays a role in the pathogenesis of MS. It has also been 
demonstrated that the antisense lncRNA FAS antisense 
transcript 1 (FAS-AS1) regulates the activity of the 
soluble Fas receptor (sFas) (63). This lncRNA modifies 
the Fas:sFas ratio and prevents exon skipping during 
the transcription of the Fas mRNA, leading to the 
development of Fas ligand (FasL)-mediated apoptosis. 
It does this by binding to the RNA-5 binding protein 
(RBM5) (64).  It has been documented that this 
pathway affects lymphocyte growth and immunological 
responses by modulating apoptosis. It has been 
emphasized how important TNF and heterogeneous 
nuclear ribonucleoprotein L (THRIL) are as lncRNAs 
that are linked to innate immunity (65). After the innate 
activation of THP1 macrophages, it was chosen among 
a vast number of differentially expressed LncRNAs. 
Additionally, Eftekharian et al. demonstrated 
dysregulation of three lncRNAs, including FAS-AS1, 
THRIL, and plasmacytoma variant translocation 1 
(PVT1), in MS patients. OIP5-AS1 was identified for 
the first time as a critical factor in early CNS 
development in zebrafish. It has been demonstrated 
that OIP5-AS1 decreases the cyclin G-associated 
kinase (GAK) mRNA stability required for mitotic 
development (66). These findings imply that OIP5-
AS1 inhibits cell growth via lowering GAK levels in 
combination with RNA-binding proteins like HuR1. 
HuR1 accessibility seems to be restricted to the cyclin 
D1, cyclin A, and SIRT1 (silent information regulator 
1) target mRNAs. Additionally, the results demonstrated 
that aberrant mitosis followed the down-regulation of 
OIP5-AS1 and was caused by a rapid up-regulation of 
GAK regulation, suggesting that OIP5-AS1 was at 
least repressed by lowering GAK expression. HUR1, a 
protein that interacts with OIP5-AS1 conserved 
sequence motifs, appears to have an effect downstream 
of OIP. AS1 has been found to be expressed in 
inflammatory diseases such as MS and 
encephalomyelitis, astrocytes, and the HUR1 gene 
(67).

CONCLUSION
The relevance of lncRNAs in the pathogenesis of MS 

has been shown through altering epigenetic mechanisms 
and their function in molecular processes. Epigenetic 
mechanisms have been found to play a significant 
part in the development of MS. Additionally, it has 
been shown that the abnormal expression of several 
lncRNAs is closely associated with the development of 
various tumors, leading to the consideration of many 
lncRNAs as possible therapeutic targets, stand-alone 
prognostic predictors, and important biological markers 
in malignancies. Several studies have indicated that 
LncRNAs are important direct targets for therapeutic 
treatments in hepatic illnesses. Due to their functional 
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long non-coding RNA (Lnc-DC), which can mediate 
DC maturation via phosphorylation transducers and 
transcription activator 3 (STAT3). Through the 
transcription of downstream genes, Lnc-DC has been 
demonstrated to have a role in the differentiation of 
monocytes into DC and the activation of T cells. As a 
result, LNC-DC can distinguish between young and 
mature DCs (53). A thin line of evidence suggests that 
MALAT1 and lnc-DC serum levels may be potentially 
promising indicators in MS preliminary screening, 
suggesting that these lncRNAs may be essential in the 
development of MS illness (54). MALAT1 and lnc-DC 
have been suggested to be used as treatment strategies 
in MS, which is encouraging. In a study, it was 
discovered that three long noncoding RNAs (lncRNAs) 
called taurine-up-regulated gene 1 (TUG1), nuclear 
paraspeckle assembly transcript 1 (NEAT1), and P21-
associated ncRNA DNA damage activated (PANDA) 
regulate immune responses and DNA damage 
responses (DDR) in MS patients (55). NEAT1 
expression was found to be inversely related to the age 
at which the disease began and the length of the illness 
in female patients (56). TUG1 expression was also 
inversely correlated with the typical illness duration in 
female patients.In response to DNA damage, the 
interaction of TUG1 with p53 and PANDA controls the 
expression of genes that govern the cell cycle and 
stabilizes the p53 protein. Additionally, NEAT1 
controls the production of cytokine genes, including 
interleukin (IL)-8, that are implicated in antiviral 
responses (57). In research by Imamura et al., a 
NEAT1-dependent SFPQ (Splicing Factor Proline and 
Glutamine Rich) translocation was shown to suppress 
IL-8 transcription, activate NEAT1 expression, move 
SFPQ from the IL8 promoter to the paraspeckles, and 
finally result in the transcriptional activation of IL8 
(58). NEAT1 is important for innate immune responses 
because it controls the transcription of antiviral genes 
through SFPQ and NEAT1’s stimulus responsiveness 
(59). LncRNAs are drawing increasing attention to the 
function of antisense noncoding RNA in the INK4 
locus (ANRIL), which controls cell proliferation and 
senescence. ANRIL’s regulatory function in 
inflammatory responses has led to increased interest in 
its potential significance in inflammatory diseases (60). 
According to research findings, ANRIL has a role in 
the etiology of MS. LincMAF-4, by regulating Th1/
Th2 differentiation, has been considered one of the 
main drivers in MS pathogenesis, despite the fact that 
MS is an autoimmune disease that is related to immune 
dysregulation and an imbalance in Th1, Th2, and Th17 
cells (61). However, more research is required to 
confirm this. In a newly released study, it was shown 
that linc-MAF-4 was markedly up-regulated in MS 
patients, indicating that it might 
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