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Abstract:

Drug resistance in cancer is a major challenge to properly treating malignancy. 
Therapies aimed at proteins involved in cancer development may become less 
effective due to acquired resistance to medications, often resulting from mutations as 
well as heightened expression of the targeted proteins. Posttranslational modifications 
(PTMs) like as phosphorylation, methylation, ubiquitination, and acetylation 
are crucial for regulating protein expression levels. PROTACs are engineered to 
selectively degrade a specific protein of interest (POI) by ubiquitination, resulting 
in a regulated decrease in the POI’s expression. PROTACs show great potential 
in targeting hitherto untargetable proteins, such as various transcription factors. 
PROTACs enhance antitumor immune therapy by specifically modifying certain 
proteins. Although molecular therapies have advanced, lung cancer remains a major 
contributor to cancer-related mortality. The management of those with lung cancer is 
now limited by a lack of targeted therapy choices and the development of acquired 
drug resistance. Using the intracellular ubiquitin-proteasome system for directed 
protein breakdown might enhance individualized treatment for lung cancer patients. 
This study explores the rationale for using PROTAC therapy as an innovative specific 
therapy and the current advancements in PROTAC development for lung tumors.
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INTRODUCTION
Cancer incidence and death rates are on the rise 

globally, with lung tumors being the most often 
detected kind, representing 11.6% of all cases. The 
malignancy of the lung is the primary cause of cancer-
related deaths worldwide, accounting for 18.4% of all 
cancer fatalities and resulting in substantial societal 
and economic impacts. The five-year survival rate for 
lung cancers is below 20%. Early-stage lung cancer 
individuals who had micro-invasive carcinoma and 
carcinoma had a 5-year survival rate above 100%, 
whereas advanced-stage lung cancer patients had a 
survival rate of around 2% (3). Patients with advanced-
stage lung cancer should be given a thorough diagnosis 
and be prioritized for chemotherapy or radiation. 
Timely detection of lung cancer and appropriate 
therapy may significantly enhance patients’ survival 
rate by 20%. Smoking is responsible for about eighty 
percent of fatalities related to lung cancer (4). Factors 
contributing to the chance of developing lung cancer 

include exposure to radon, asbestos, long-term and 
repeated contact to air pollutants, including emissions 
of polycyclic aromatic hydrocarbons (PAH), and a 
previous history of cancer of the lungs. The World 
Health Organization (WHO) categorizes lung cancers 
into two primary groups: non-small cell lung cancer 
(NSCLC) representing 80–85% of cases, and small 
cell lung cancer (SCLC) accounting for the remaining 
15%. NSCLC may be classified as adenocarcinoma 
(LUAD), squamous cell carcinoma (LUSC), and large 
cell carcinoma (LCC) (5). Every subclass may be 
subdivided into many groups based on the molecular 
targetable genetic profile. The 5-year rate of survival 
for metastatic lung cancer, including both NSCLC and 
SCLC types, are around 4% (5).  Attempts have been 
made to classify histological subtypes of lung cancer. 
Each subtype, including adeno, squamous, and small 
cell carcinoma, has diverse genetic characteristics as 
identified by the Cancer Genome Atlas via molecular 
analysis (6). This variety complicates the interpretation 
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of comprehensive therapy studies that combine clinical 
outcomes and can miss important therapeutic options 
designed for specific mutational backgrounds (6).

Both TNM staging and thorough genes are essential 
for choosing the treatment for patients having 
lung tumors. Patients undergo biopsy, staging, and 
genome sequencing to determine suitable therapies 
for lung tumors, such as surgical removal, radiation, 
systemic radiation therapy, specific treatment, and 
immunotherapy. Many individuals with advanced 
cancer are likely to have tumor development over time 
as a result of the clonal selection of treatment-resistant 
tumor cells. Developing innovative strategies to address 
medication resistance is essential for improving patient 
results (7).

Although advancements have been made in 
identifying driver mutations, the outlook for patients 
with advanced or metastatic NSCLC remains 
unfavorable. The primary obstacle associated with 
targeted treatment is the development of acquired 
resistance (8). Typical resistance mechanisms involve 
of changes in driving oncogenes, variations in parallel 
signaling pathways, histologic transformations, and 
drug tolerance (9). The requirement for innovative 
treatments that address both the primary mutation and 
probable resistance pathways is underscored by the 
resistance and subsequent advancement seen in several 
individuals. One innovative treatment approach 
involves the application of target protein degraders 
(TPD) such proteolysis targeting chimeras (PROTACs) 
or lysosomal-targeting chimeras (LYTACs). LYTACs 
and PROTACs use intrinsic cellular mechanisms to 
specifically eliminate cancer-causing proteins (10). The 
PROTAC approach is currently employed in laboratory 
experiments, animal studies, and early-stage clinical 
trials to evaluate its efficacy against key alterations 
in various cancer types (11). This study presents the 
PROTAC innovation, explores advancements in 
PROTAC innovation for lung cancer, and assesses the 
potential and obstacles in using PROTACs for clinical 
applications to improve lung tumor therapy.

Introduction proteolysis targeting chimera
PROTACs are molecules with two different functions 

that use the natural ubiquitin-proteasome system to 
target and eliminate certain proteins associated with 
illnesses like cancer (12). PROTACs are composed 
of two protein binding molecules that are covalently 
bonded. One molecule attaches to the protein targeted 
for degradation, while the other engages the E3 ubiquitin 
ligase, facilitating ubiquitination and subsequent 
destruction (13). Proteins are ubiquitinated and then 
degraded by the proteasome via a process including 
activation, conjugation, and ligation steps. Ubiquitin 
is transferred in a step-by-step manner from E1 to E2 
and ultimately to the target protein for degradation by 

the E3 enzyme. Proteasomes break down the protein 
(14). The PROTAC molecule exploits this mechanism 
by attaching to the ubiquitin-E2-E3 complex and 
the desired protein, promoting ubiquitination and 
eventual degradation of the protein (14). The PROTAC 
addresses several resistance-related difficulties by fully 
degrading the protein. Additionally, the PROTAC does 
not need contact with the active region of the molecule. 
PROTAC compounds may expedite the breakdown of 
several target molecules and may need lower dosages 
compared to direct inhibitors (15). This might result 
in less systemic adverse effects as compared to direct 
inhibitors. This approach is rapidly progressing and 
is being studied in several kinds of malignancies 
including lung, breast, prostate, and hematologic 
cancers. The modular structure of PROTAC design 
provides significant potential, flexibility, and 
effectiveness in creating new PROTACs to target and 
break down different intracellular protein substrates 
(16). Small chemicals that bind to specific regions of 
target proteins are used in PROTAC development as 
ligands for the protein-of-interest (POI), rather than 
conventional small molecule inhibitors (SMIs) that 
need high affinities to block protein function. Various 
PROTACs have been created and improved by using 
a range of small molecule substances, including 
authorized by the Food and targeted inhibitors, failed 
clinical trial medicines, and tool compounds (17). 
For instance, small molecule epidermal growth factor 
receptor (EGFR) inhibitors and ALK inhibitors were 
used to create PROTACs that specifically target and 
destroy EGFR and ALK (18). 

Many reported PROTACs use commonly expressed 
CRBN and VHL E3 ligases, potentially resulting in 
on-target toxicity  (19). PROTACs targeting the same 
protein exhibit different degradation rates when using 
either a CRBN or a VHL E3 ligase. Identifying E3 
ligases that are unique to tumors and developing specific 
ligands for them might greatly enhance the effectiveness 
of tumor-targeted therapies. PROTACs have numerous 
advantages as compared to conventional small 
molecule inhibitors (SMIs) (20). PROTACs function by 
degrading protein targets rather than by limiting their 
activity. This is expected to provide better suppression 
in a scenario where the cancer-causing behavior of 
an objective may happen regardless of its enzymatic 
function. PROTACs may modify the scaffolding role 
of certain proteins to enhance the effectiveness of the 
payloads and overcome tolerance (21). It may target 
and dismantle multicomponent complexes of proteins 
that are often considered “undruggable” since blocking 
one subunit may not deactivate the complex’s function. 
Furthermore, PROTACs might combat resistance by 
degrading overexpressed proteins of interest induced 
by small molecule inhibitors or proteins of interest 
arising from mutations in the targets (22). PROTACs 
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have unique event-driven pharmacology, allowing 
them to trigger many cycles of degradation, unlike 
SMIs that depend on occupancy-driven pharmacology. 
PROTAC molecules provide a unique mechanism that 
enables them to degrade a range of target proteins 
using minimum drug dosages to achieve the desired 
medical result. The modular design of PROTACs 
allows for convenient and adaptable development and 
enhancement (23).

Advancements in PROTAC technology 
PROTACs have become innovative treatments 

for lung cancer and effective approaches to combat 
medication resistance in recent times. Several PROTAC 
medicines have been created to target established goals 
for therapy in NSCLC, including EGFR, KRAS, ALK, 
BRAF, and BCL-XL (23). These medications have 
shown anti-cancer effectiveness in cultured cells and 
experimental tumor models. Additional improvement 
of these PROTAC medicines is necessary, coupled 
with thorough preclinical assessment before advancing 
to clinical trials.

PROTACs that target EGFR
The main EGFR mutations are EGFREx19Del and 

EGFRL858R. First and second-generation EGFR-
TKIs, including as gefitinib, erlotinib, afatinib, and 
dacomitinib, were created for targeting these genetic 
variants directly (24). Osimertinib addressed resistance 
problems by specifically targeting the EGFRT790M 
mutation that developed as a result of previous EGFR-
TKIs (25). Many patients who first benefit from 
osimertinib will eventually develop resistance owing 
to additional EGFR alterations, structural alterations, 
and heightened MET amplification. Approximately 
40% to 50% of patients had novel EGFR mutations, 
namely in the C797, G796, and L718 sites, leading 
to cancer recurrence due to resistance to treatment. 
The majority of advanced-stage patients with lung 
cancer have reduced effectiveness of EGFR-TKIs 
due to resistance, emphasizing the requirement for 
innovative treatment approaches to combat acquired 
resistance mechanisms such the emergence of new 
EGFR C797S and T790M mutations (26). PROTAC 
approach efficiently targets EGFR mutations that are 
resistant by inducing the degradation of specific EGFR 
mutants (27). Molecule 4, a PROTAC compound 
created from afatinib, caused the breakdown of the 
gefitinib-resistant L858R/T790M mutant EGFR in the 
H1975 cell line. This work showed that PROTACs 
may effectively degrade mutant EGFR proteins located 
on the cell membrane to address drug-resistant EGFR 
mutations. Building upon this finding, many research 
teams have created innovative EGFR PROTACs, with 
some showing effectiveness in inhibiting tumor growth 
in animal models. The Zhang group has developed 

accessible EGFR PROTAC, HJM-561, to address 
treatment resistance in NSCLC resulting from EGFR 
triple mutations. This drug effectively targets mutant 
EGFR proteins, showing potent antitumor effects in 
cell line-derived xenograft (CDX) and patient-derived 
xenograft (PDX) mice with EGFR Del19/T790M/
C797S mutations that did not respond to osimertinib 
therapy (28). The Zhu group developed potent covalent 
inhibitors using dacomitinib to target and destroy 
EGFR (29). The Li group discovered two powerful and 
selective compounds, 13a and 13b, that target a specific 
protein and efficiently inhibited the development of 
malignancies in a laboratory setting (30). CFT8919 
has been shown to cause tumor shrinkage in preclinical 
tumor models that are resistant to first-, second-, and 
third-generation EGFR-TKIs. It also has the ability 
to target CNS metastases in the preclinical model 
(31). These EGFR PROTACs show great promise as 
candidates for future development and evaluation in 
clinical research as new treatments to address EGFR-
TKI-induced resistance.

PROTACs that target KRAS
Mutations in the KRAS gene have a critical role 

in the pathogenesis of multiple malignancies. The 
most common mutation is the KRASG12C (32). 
Investigators have been working to develop KRAS 
inhibitors for a long time. KRAS mutations result in 
a molecule that remains in a very persistent state of 
activity because of its robust interaction with GTP (33). 
Protacs designed to target KRAS aim to overcome 
resistance in KRAS12C and other KRAS mutations. 
In 2020, the Bond group revealed the initial KRAS 
PROTAC designed for the KRASG12C (34, 35). The 
PROTACs utilized ARS-1620 to attach to KRASG12C 
and thalidomide derivatives, aiming to eliminate 
the KRAS G12C mutant via CRBN E3-ligase (36). 
The Crews group developed VHL-based PROTACs 
by using MRTX849 as the covalent KRASG12C 
warhead. Their main chemical LC-2 induced the 
degradation of KRAS and impeded the MAPK 
signaling pathway, resulting in reduced p-ERK levels 
across multiple human lung cancer cell lines with the 
KRASG12C mutation. Nevertheless, this PROTAC 
did not demonstrate superior antiproliferative activity 
compared to MRTX849, perhaps because of its 
covalently permanent character that disrupts the usual 
catalytic process seen in PROTACs (36). 

Focusing on ALK with PROTACs
Anaplastic lymphoma kinase (ALK), a receptor 

tyrosine kinase belonging to the insulin receptor kinase 
subfamily, was first discovered via a chromosomal 
translocation associated with anaplastic large cell 
lymphoma (ALCL), a form of T-cell non-Hodgkin’s 
lymphoma (37). The discovery of ALK gene 
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rearrangement represents a significant advancement in 
treating NSCLC, which makes up approximately eighty 
percent of those with lung cancer. ALK is essential for 
brain development since it has a substantial influence 
on certain neurons in the nervous system. Crizotinib 
(Xalkori) is the first ALK inhibitor authorized by the 
FDA for treating patients with metastatic nonsmall 
cell lung cancer that is ROS1+ or ALK+ (39). Drug 
resistance and the initiation of a relapse phase during 
crizotinib treatment have been attributed to mutations 
located in the ALK kinase domain. There is a scarcity 
of inhibitors that possess the capability to impede the 
extensive array of ALK mutants. Cittatinib, the second 
ALK blocker approved by the FDA, blocks several 
mutations that cause resistance to crizotinib (40). The 
subsequent approvals included brigatinib, alectinib, 
and others (39). In rare instances, inflammatory 
myofibroblastic tumors manifest in internal organs 
and soft tissues, such as the brain, pancreas, mouth, 
epidermis, breast, nerve, gastrointestinal and 
genitourinary tracts, bone, stomach, kidney, urinal 
bladder, and ovary. Lorlatinib, a third-generation 
ALK inhibitor, successfully blocks frequent resistance 
variants including ALKG1269A and ALKL1196M. 
However, its effectiveness is compromised by dual 
alterations like ALKL1196M/D1203N, ALKF1174L/
G1202R, and ALKC1156Y/G1269A (41, 42). 
Ongoing research is focused on developing PROTACs 
that selectively target mutant ALK due to the many 
permanent changes seen in ALK-positive NSCLC. 
Mammalian cells typically have a limited spread of 
ALK mRNA and protein, which remain at a modest 
level in adult individuals. Pharmacologically degrading 
ALK with SNIPER or PROTAC should not cause 
intolerance in humans based on ALK’s physiological 
role in mammals (43). Hence, it is anticipated that ALK 
degraders/disruptors, small molecule agents with dual 
functionalities to breakdown or interrupt ALK, would 
have minimal negative impacts on clinical health.

Targeting of FAK targeting
A cytoplasmic tyrosine kinase, focal adhesion kinase 

(FAK) regulates cellular proliferation and signal 
transductions mediated by integrins. FAK activation is 
seen in NSCLC with KRAS mutations (44). In vitro, 
D-PROTAC lowered the FAK protein levels in A427 
cells, a KRAS mutant NSCLC cell line, in a dose-
dependent manner, resulting in over 90% degradation. 
For the purpose of treating A427 cells, either defactinib 
or D-PROTAC was utilized (45). Significantly larger 
potency characterized D-PROTAC than defactinib. 
Cell viability was observed to diminish by 70% upon 
exposure to D-PROTAC. Conversely, treatment with 
defactinib led to a viability reduction of 24% (46, 
47). Furthermore, cell migration and invasion were 
substantially inhibited by D-PROTAC in comparison 

to defactinib. Analyzed in vivo investigations used 
mice with xenograft A427 tumors that were treated 
with intratumor injections of D-PROTAC or 10 mg/
kg defactinib. Following a 21-day period, the tumor 
volume in the D-PROTAC group escalated by 340 
mm3 from its initial value of 100 mm3. In contrast, 
the defactinib group witnessed a rise of 1500 mm3. 
In the D-PROTAC group, there was an 89% decline 
in FAK levels, whereas the reduction observed in 
the defactinib group was only marginal (47). In the 
absence of significant damage to neighboring healthy 
tissue, D-PROTAC appears to be biosafe.

DISCUSSION AND FUTURE PROSPECTS
Targeting tumor therapy has significantly 

transformed the treatment of various kinds of cancer 
over the last twenty years. However, the effectiveness 
of these therapies is often restricted by the emergence 
of drug resistance. Comprehending the most recent 
resistance pathways might result in creating advanced 
medication generations to improve therapeutic 
effectiveness in people (48). Yet, the increasing 
expenses and technological challenges associated with 
combating drug resistance might render this approach 
unfeasible in the long run. Therefore, there is an 
urgent requirement to create new therapeutic protocols 
and treatment approaches. PROTAC technique has 
revolutionized drug development by providing several 
benefits compared to traditional protein inhibitors 
based on occupancy (49). PROTACs are being created 
for targeting several clinically significant targets, 
with over a dozen of them progressing to clinical 
trials, showcasing the significant potential of this 
novel therapeutic approach. As seen in the instances 
provided, PROTACs provide an efficient method to 
combat different types of developing drug resistance 
to SMIs (50). Due to their event-driven pharmacology, 
PROTACs are effective in removing the target protein 
completely and inducing its degradation through 
target binding rather than disrupting its function. This 
makes them suitable for treating various mechanisms 
of resistance generated by target therapy in clinical 
settings (51). This involves processes such as binding 
of drugs hindered by small genetic alterations leading 
to continuous concentrate stimulation, mutations 
that modify the structure of the binding domain, 
acquisition of scaffolding activity due to target 
complex reorganization, overexpression of target 
proteins, increased competition from natural ligands, 
and splicing mutations (52). 

Overall, PROTACs show promise in addressing the 
many obstacles encountered in targeted treatments due 
to drug resistance. PROTAC technology has significant 
drawbacks, such as the risk of cancer cells developing 
resistance to PROTACs over time, which has garnered 
interest from both academics and business (53). The 
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mechanisms of resistance seen in small molecule 
inhibitors (SMIs) might also appear in proteolysis-
targeting chimeras (PROTACs) due to changes in both 
the Protein of Interest (POI) or the E3 ligase, which 
could hinder the formation of a ternary complex by the 
PROTAC. The medicine’s resistance was not generated 
by mutations disrupting the binding to the Protein of 
Interest (POI), but rather by genetic modifications that 
hinder the fundamental components of the Ubiquitin-
Proteasome System (UPS) (54). The mutants have 
mutations impacting the ubiquitination process, 
leading to varying resistance depending on the specific 
E3 ligase targeted by the PROTAC (55, 56). Despite 
the potential development of resistance, PROTACs 
show increasing promise in disease treatment because 
to their advantages over standard SMIs, especially in 
their capacity to quickly provoke resistance in tumors 
(57). It is premature to determine whether these 
commitments will result in tangible advantages in 
medical therapies. We expect to see evidence of concept 
results from these research shortly due to the current 
clinical trials and the release of new drugs for testing. 
Enhancing our capacity to forecast potential drug 
resistance mechanisms in advance allows us to develop 
tactics to avoid, impede, or overcome such resistance. 
PROTACs may be advantageous in reducing resistance 
since opposition to a VHL-recruiting PROTAC does 
not always mean resistance to a CRBN-recruiting 
PROTAC, and vice versa (59). Over 600 E3 ligases 
in the human genome will be identified, resulting in 
the discovery of new E3 ligases and ligands suitable 
for PROTAC development. Using a variety of E3 
recruiters may assist preserve therapeutic efficacy 
and lower the chances of resistance, resulting in the 
creation of stronger and more efficient treatments for 
various cancers (60).

CONCLUSION 
PROTACs, as a group, have less than ideal physical 
and chemical properties that hinder their development 
in the pharmaceutical field. It is essential to evaluate 
where the PROTACs are located in the lung tissue to 
treat lung cancer effectively. Additionally, PROTACs 
have pharmacodynamic effects that go beyond their 
pharmacokinetics, requiring the development of 
suitable pharmacodynamic biomarkers to determine 
dosing regimens. Additional study is needed to 
ascertain the optimal method of integrating PROTAC 
technology with existing anti-cancer therapies to 
achieve the highest clinical efficacy. Novel diagnostic 
tests are required to evaluate the efficacy of PROTAC 
in lung tumor xenograft models and immunocompetent 
animals at preclinical stages, both in laboratory 
settings and living organisms. Over the last two 
decades, molecular oncology medicines have heavily 
concentrated on lung cancer. Ongoing experimental 

and early clinical trials of a growing range of PROTAC 
candidates aim to promote customized and targeted 
treatment for enhancing the prognosis for individuals 
with advanced lung cancer.
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