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Abstract

Humans are continuously exposed to a wide of carcinogenic and mutagenic stimuli, 
including environmental toxins, radiation and viruses as well as other infections. 
Tumor metastasis is responsible for approximately 9% of all cancer-related deaths. 
The tumor microenvironment (TME) contains many distinct cell types, including 
endothelial cells and their precursors, pericytes, smooth muscle cells, fibroblasts, 
carcinoma-associated fibroblasts, myofibroblasts, neutrophils, eosinophils, basophils, 
mast cells, T and B lymphocytes, natural killer cells and antigen presenting cells 
(APC) such as macrophages and dendritic cells. Recent evidence has shown that 
stromal tissue is much more than a passive bystander in the development and 
progression of cancers. None the lese,the clinical therapy for many types of human 
cancers has mainly focused on the malignant cancer cell itself, and have made 
great achievements, yet cancer therapy still remains a great challenge. This review 
highlights the evidence for the crucial role of the tumor microenvironment in tumor 
progression and metastasis.
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INTRODUCTION
Humans are continuously exposed to a wide of 

carcinogenic and mutagenic stimuli, including 
environmental toxins, radiation and viruses as well 
as other infections (1). These stimuli results in cells 
bearing abnormal characteristics reported in a relatively 
important number of otherwise healthy persons. 
Cancer has been long viewed as a disease consisting 
of transformed cells acquiring cell autonomous hyper 
proliferative, invasive and limitless survival capacities 
(2). 

Tumor metastasis is responsible for approximately 
9% of all cancer-related deaths (3). Metastasis, on the 
other hand, is a multistage process that requires cancer 
cells to escape from the primary tumor, survive in 
the circulation while hiding from tumor surveillance 
mechanisms, seed at distant sites, establish themselves 
and grow (4, 5). It is well established that to form a 
metastasis from a primary tumor, the cancer cells need 
to acquire additional properties that enable invasion of 
the extracellular matrix (ECM), intravasation, travel 
via the blood vessels, migration to and invasion into a 
secondary site, and finally the formation of metastatic 
nodules (6). As a solid tumor grows, the rate of cancer 

cell proliferation surpasses the ability of the existing 
vasculature to supply growth factors, nutrients, and 
oxygen and to remove the catabolites produced by the 
cells. The result of this imbalance between supply and 
demand is regions of hypoxia, low glucose levels and 
low pH. The development of metastasis is complex, 
requiring multiple individual steps to successfully 
establish a tumor at a secondary site (7). 

The tumor microenvironment (TME) contains many 
distinct cell types, including endothelial cells and their 
precursors, pericytes, smooth muscle cells, fibroblasts, 
carcinoma-associated fibroblasts, myofibroblasts, 
neutrophils, eosinophils, basophils, mast cells, T 
and B lymphocytes, natural killer cells and antigen 
presenting cells (APC) such as macrophages and 
dendritic cells (8). Bidirectional communication 
between cells and their microenvironment is critical 
for both normal tissue homeostasis, and for tumor 
growth (9). In particular, interactions between tumor 
cells and the associated stroma represent a powerful 
relationship that influences disease initiation, 
progression and patient prognosis (10, 11). A major 
mechanism for carcinoma cell dissemination from 
the primary tumor to distant organs is hematogenous 

spread (12). Multiphoton-based intravital imaging has 
demonstrated that invasive carcinoma cells in mouse 
and rat mammary tumors comigrate and intravasate 
when associated with perivascular macrophages 
(13). Specifically, intravasation occurs at sites where 
a macrophage, a tumor cell, and an endothelial cell 
are in direct contact. The TME comprises the ECM 
and basement membrane (BM), endothelial cells, 
adipose cells, tumor-infiltrating immune cells, cancer-
associated fibroblasts (CAFs), neuroendocrine cells, 
pericytes, as well as a plethora of signalling molecules 
that regulate tumor progression (14). Cancer cells 
secrete growth factors and cytokines (including IL-6, 
IL-1, TGF- 1, TGF- 2, FGF-2, and PDGF) that recruit 
and reprogram stromal cells, such as immune cells 
and fibroblasts, as well as enzymes that degrade and 
remodel the surrounding ECM and BM, such as matrix 
metalloproteinases (MMPs) (15).

 Instead, there is a bidirectional, dynamic and 
intricate complex of interactions between the cells of 
the stromal tissue and the cancer cells (16, 17). The 
first evidence that non-cancerous tissue elements might 
affect tumor formation and growth came from the weld 
of inflammation (9). A link between inflammation 
and cancer has been recognized already in 1863 by 
Rudolf Virchow, when he reported the presence of 
leucocytes in tumor tissues. Based on this observation 
he proposed the idea that cancer originates at sites of 
chronic inflammation. The presence of leukocytes in 
tumors was subsequently interpreted as an aborted 
attempt of the immune system to reject the tumor (18).

Another integral factor in tumor proliferation 
and protection from immune destruction is the 
establishment of adequate blood supply, through 
angiogenesis and the provision of tumor growth factors 
(4, 15). Platelets and, potentially, platelet derived micro 
particles [PMPs] fulfill this role and may contribute to 
immunosuppression (19). Finally, many tumors are 
hormone-sensitive, by virtue of their cells of origin 
or by their potential to express hormonal receptors 
that modulate their growth and spread. In this review, 
we summarize the latest findings in the efforts for 
understanding the complex roles of TME constituents 
in various stages of metastatic progression and discuss 
about strategies as well as future challenges for targeting 
TME components to battle the most aggressive forms 
of the disease (18, 19).

Roles of Cellular TME Components in Regulating 
the Metastatic Cascade:
Immune Regulation of  Tumor Growth and 
Propagation

Most of the immune cell populations in the tumor 
microenvironment play distinct roles in the modulation 
of the tumor milieu, favoring or inhibiting tumorigenesis 
(20). It is unambiguously accepted that immune cells 

exert pivotal effects in the properties of cancer cells 
at different stages of the invasion-metastasis cascade, 
either by infiltrating the tumor or by affecting the 
systemic environment (21). It is nowadays considered 
that the main mechanism of tumor immunity is due 
to an antitumoral T cell response. This antitumor 
response can be due to the direct killing of tumor cells 
by CD8 cytotoxic T lymphocytes (CTL) recognizing 
major histocompatibility complex (MHC) class I 
restricted antigens expressed on the surface of tumor 
cells (22).  IL-10 has pleiotropic effects on T cell 
functions, including the suppression of GM-CSF, IFN-
gama and IL-2 production by T helper cells, inhibition 
of T cell proliferation, downregulation of expression 
of adhesion molecules and MHC class I and class II 
antigens (23, 24). Patients with ovarian carcinoma 
frequently present abundant levels of this cytokines in 
serum, in the peritoneal exudate and in the tumor tissue 
(25). Some cytokines inhibit the expression of immune 
activating cytokines, such as IL-2 and IL-4. This can 
inhibit the natural homeostatic mechanisms that control 
the specific cellular immunity and could be responsible 
for the signaling defects in T lymphocytes, routinely 
observed in late stage cancer patients, rendering them 
ineffective in mounting tumor associated antigen 
(TAA) specific effector activity (26).

Myeloid cells. Macrophages, often referred to tumor 
associated macrophages (TAMs) when present in 
the tumor milieu, are either recruited from the bone 
marrow or reside in the original stromal environment 
(8, 27). They interact with a wide range of growth 
factors, cytokines and chemokines, which are thought 
to educate the TAMs and determine their specific 
phenotype and, hence, functional role as tumoricidal/ 
static or tumor promoters (28). They present foreign 
antigens to helper T cells and can prime naïve T cells. 
TAMs can act in two opposing functions depending on 
their polarization subtype: M1-type TAMs have pro-
inflammatory and anti-tumoral properties and activate 
the immune system by releasing interferon (IFN)- 
and IL-12 (29). On the other hand, M2-type TAMs 
are pro-tumorigenic, and exert immunosuppressive 
functions by producing IL-10, induce angiogenesis 
and stimulate tumor cells to release MMPs that favor 
cancer progression by disrupting the ECM and BM 
(30, 31). Myeloid-derived-suppressor cells [MDSCs] 
arising in the context of aberrant myelopoiesis in 
cancer patients are a heterogeneous population of 
immune cells from the myeloid lineage that execute 
strong immunosuppressive activities (32). They are 
mobilized to the tumor milieu, where they infiltrate 
the growing tumor, favoring neovascularization and 
interfering significantly with the different mechanisms 
of immune surveillance (33).

Mast cells are resident granulocytes in most tissue, 
are recruited to the tumor milieu and act as reservoirs, 
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releasing tumor promoter cytokines (30).
The various components of the immune system 

seem to interplay with the stromal factors, regulating 
tumor growth and dissemination. It seems therefore 
evident that immune modulation should be a crucial 
component in the fight against cancer (34). 

Inflammation
The link between inflammation and cancer was 

first proposed by Virchow, who observed leukocytes 
infiltrating tumor sites (35). Statistically, tissues 
subjected to chronic inflammation generally exhibit 
a higher cancer incidence, reflecting a deregulated 
microenvironment (36). It is becoming increasingly 
evident that inflammatory cells recruited in the 
tumor stroma play a pivotal role in triggering tumor 
angiogenesis. It has been proposed that inflammatory 
cells might in fact be responsible for a substantial 
portion of tumor angiogenesis by acting as initiator 
of vascularization. It has been hypothesized that the 
balance between the tumor antagonizing inflammatory 
cells and the tumor promoting inflammatory cells 
modulates tumor progression (35). The tumor-
promoting inflammatory cells include macrophage 
subtypes, mast cells and neutrophils, as well as T and B 
lymphocytes. These cells can secrete several signaling 
molecules that serve as effectors of their tumor-
promoting actions (37).

At the molecular level, free radicals and aldehydes, 
produced during chronic inflammation, can induce 
deleterious gene mutation and posttranslational 
modifications of key cancer-related proteins. Innate 
immune (i.e. macrophages, neutrophils) release a 
number of factors that able to stimulate and activate 
endothelial cells, such as VEGF, HGF, MMP-2, MMP-
9 and IL-8 (37, 38). Neutrophils were largely ignored 
for a long time in the context of tumor angiogenesis 
but recent studies have shown their important role in 
this process (39). Within the tumor mass, in addition to 
fully differentiated immune cells, a variety of partially 
differentiated myeloid progenitors have been identified. 
These cells are intermediates between the circulating 
cells of bone marrow origin and the fully differentiated 
immune cells in normal and inflamed tissues, and they 
show tumor-promoting activities (40). 

Other products of inflammation include cytokines, 
growth factors, and transcription factors such as 
nuclear factor-kappa B. These control the expression 
of cancer genes (e.g., suppressor genes and oncogenes) 
and key inflammatory enzymes such as inducible 
nitric oxide synthase and cyclo-oxygenase (40, 
41). Chronic inflammation is also associated with 
immunosuppression, which is a general risk factor 
for cancer. In addition, to classical inflammatory 
cells, bone marrow-derived cells (BMDC) has been 
recently shown to be mobilized from the bone marrow 

in response to stimuli originating form the growing 
tumor, and to recruit at tumor sites to promote tumor 
angiogenesis and tumor invasion (4,25,26). Of the 
12.7 million new cancer cases that occurred in 2008 
worldwide, 16.1% (around 2 million) were associated 
with infections and their ensuing inflammation. Finally, 
exposure to radiation is also an important determinant 
of the stromal response to tumorigenesis as it induces 
both inflammation and tissue-specific dysfunction in 
repair processes with deregulated tissue homeostasis 
(42).

Stromal cells
The tumor margin is an important meeting place in 

the TME where recruited immune and stromal cells 
are highly active and interactive with the tumor (43). 
Immature myeloid cells accumulate in this region, and 
prevent differentiation of antigen-presenting DCs, thus 
supporting tumor immune evasion. Macrophages are 
another major cell type at the invasive edge of tumors, 
and are recruited by tumor-derived chemoattractants 
(44). Upon their arrival, TAMs promote invasion of 
tumor cells by supplying pro-migratory factors such as 
EGF, by regulating the production of fibrillar collagen 
to accelerate tumor motility, and by promoting ECM 
proteolytic remodeling. CAFs are similarly abundant 
at the tumor margin where they release pro-invasive 
factors for tumor cells; in hepatocellular carcinoma, 
CAFs participate in a TGF-β/PDGF signaling crosstalk 
with tumor cells to support EMT and the acquisition of 
an invasive phenotype (45).

Matrix metalloproteinases, or matrixins, are 
endopeptidases that belong to a family of zinc-
dependent proteases with more than 21 human forms. 
Their main substrates are matrix molecules such as 
collagen, but many non-matrix substrates have also 
recently been identified (32, 46). They are important 
in many aspects of invasion and metastasis, and play 
a part in remodeling the ECM. Finally, stem cells 
are a key factor in tissue homeostasis. Their activity 
is tightly regulated during development and in adult 
tissues through the combined action of local and 
systemic effectors. Stem cells may also contribute to 
the establishment and continuous growth of tumors 
when tissue homeostasis is unbalanced (47).

Cancer-Associated Fibroblasts in Promoting 
Metastasis

Fibroblasts are a predominant, multi-functional 
cell type in connective tissue, depositing ECM 
and basement membrane components, regulating 
differentiation events in associated epithelial cells, 
modulating immune responses, and mediating 
homeostasis (48). In the tumor stroma, together with 
the other stroma cells, the fibroblasts are a source of 
S100A4, a calcium binding protein of the S100 protein 

family, as well as the members of which have important 
roles in metastasis. High levels of S100A4 expression 
correlate with negative prognosis in several types of 
cancer (49).

CAFs constitute one of the most abundant 
stromal components in solid tumors (50). CAFs are 
distinguished from different cell subtypes based on 
the presence of several stromal markers, including 
integrin 1 (CD29), fibroblast activation protein (FAP), 
and α-smooth muscle actin (50, 51). In the TME, CAFs 
are present in aberrantly high numbers and are distinct 
from normal fibroblasts. For example, normal prostate 
epithelial cells give rise to intraepithelial neoplasia in 
mice when co-injected with CAFs, but not when co-
injected with normal fibroblasts. Similarly in breast 
cancer, CAFs confer a mesenchymal-like phenotype 
and enhance metastasis of both premalignant and 
malignant mammary epithelial cells, whereas normal 
fibroblasts promote an epithelial-like phenotype and 
suppress metastasis (52). In addition, in women with 
primary tumors smaller than 2 cm without lymph node 
metastasis, the presence of CAF-S1 cells favors breast 
cancer metastasis to the bone via CDH11/osteoblast 
cadherin (47).

Cancer cells can activate fibroblasts in a three-step 
process: recruitment, transformation to CAFs, and 
maintenance in the TME. The presence of a specific 
subset of CAFs in the microenvironment and CAF-S1 
were recently shown to suppress the immune system by 
attracting and promoting the survival, differentiation, 
and activation of CD4+CD25+ T lymphocytes (53). 
Interestingly, CAFs in the breast TME can select 
for bone-specific metastatic traits in primary tumor 
cells, due in part to a selective interaction between 
breast cancer cells with high Src activity, and primary 
CAFs that secrete CXCL12 and IGF1. This raises the 
intriguing possibility that heterotypic signaling in the 
primary TME enriches for metastatic cells primed 
to flourish in specific foreign microenvironments, 
providing further evidence for the interdependency of 
multiple cell types within the TME (3, 22, and 54).
Hypoxia in tumors

Solid stress and tumor stiffening contribute to 
metastasis not only by increasing directly the invasive 
and metastatic potential of cancer cells but also by 
inducing hypoxia (55). The development of tumor 
hypoxia is intrinsically linked to the formation of 
neovasculature by the process of angiogenesis, which 
involves the expansion of vascular endothelial cells, 
degradation of the local extracellular matrix, and 
migration of the endothelial cells towards the tumor 
(56). This requires a series of complex molecular 
events resulting in the simultaneous up-regulation 
of proangiogenic factors and down-regulation of 
angiogenic inhibitors (57). 

During hypoxia, cancer cells change their metabolic 

activities by switching from oxidative phosphorylation 
to aerobic glycolysis which causes acidification of 
the extracellular space (26, 57, and 58). Acidosis is 
a major physiological parameter of TME linked to 
hypoxia which allows the survival of selected cells 
that can adapt to these acidic conditions. Experimental 
studies that clearly define the absolute oxygen level 
and duration of hypoxic exposure are needed to further 
elucidate the effects of temporal fluctuations in oxygen 
concentrations that occur within solid tumors (59). 
Induction of hypoxia activates a vicious circle of 
downstream signaling cascades to promote responses 
that define cancer hallmarks, including metabolic 
reprogramming, mesenchymal transformation of 
cells, proliferation, survival, angiogenesis, migration, 
invasion, immunosuppression, and metastasis. 
Approximately 50–60% of solid tumors exhibit 
hypoxic regions where O2 tension can be low (<10 
mmHg) and heterogeneously distributed within 
the tumor (60). Hypoxia affects the TME and puts 
selective pressure on cancer cells that develop genetic 
and/or epigenetic adaptive changes in order to survive 
and in combination with the formation of new vessels, 
mainly at the tumor periphery, eventually metastasize 
to distant sites (61).
Therapeutic implication

Cancer cells require an enormous variety of genetic 
changes to elicit tumorigenesis (62). The clinical 
therapy for many types of human cancers has mainly 
focused on the malignant cancer cell itself, and have 
made great achievements, yet cancer therapy still 
remain a great challenge. Most therapeutic strategies 
against cancer have focused on targeting various 
aspects of tumor cells directly; however, stromal cells 
within the TME are genetically stable compared to 
tumor cells, and are thus likely to be less susceptible 
to classical mechanisms of therapeutic resistance 
(63). Various therapies attempt to block mechanisms 
of immune evasion by tumors, many of which are 
currently focused on advanced melanoma patients 
given their high numbers of lymphocytes (64). 
Ipilimumab is an FDA-approved antibody that targets 
cytotoxic Tlymphocyte- associated antigen 4 (CTLA-
4), which activates T cells and promotes antitumor 
immunity. In the first clinical trial for ipilimumab 
in patients with inoperable metastatic melanoma, 
overall survival increased to ~10 months, compared 
to 6.4 months for those patients who were not on 
ipilimumab therapy (65). 

Targeting the tumor microenvironment holds great 
potential for cancer therapy. There are many tumor-
promoting factors in the tumor microenvironment, 
suggesting that inhibition of these tumor-promoting 
factors or destroying these signaling pathways can 
prevent the development of cancer. For example, 
tumors in a stroma xenograft model treated with 
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the TGF-β inhibitor exhibited a reduction in blood 
vessels. More research is needed to develop more 
efficient approaches to combat cancer (58, 59, and 
65).
CONCLUSION

Tumors are aberrant cells bearing abnormal 
characteristics reported in a relatively important 
number of otherwise healthy persons (66). It is now 
widely accepted that tumors contain cancer stem cells 
(CSC) bearing self-renewal potential and resistant to 
conventional cancer therapy with greater invasiveness 
and metastatic behavior (67). Identification of 
these cells and their niche is critical for identifying 
molecular targets in order to inhibit their growth and 
to destroy their niche (18). In recent years the study 
of tumor microenvironment, its cellular and molecular 
components, and how they can affect neoplastic 
progression, have become an emerging topic in cancer 
research. This is an exciting time for the TME field, as 
illustrated by the examples discussed here, which have 
revealed new biological concepts and identified novel 
therapeutic strategies to target the TME. Nonetheless, 
with these advances come new challenges, the most 
obvious being how to identify and target susceptible 
nodes in the increasingly complex and interconnected 
TME (68). This review highlights the evidence for 
the crucial role of the tumor microenvironment in 
tumor progression and metastasis. Targeting the tumor 
microenvironment combined with current clinical 
approaches holds great potential for developing new 
efficient therapies. Cancer medicine must move toward 
a new era of personalized diagnostics and therapeutics 
that aggressively embraces integrative approaches 
(69).
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