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Abstract

Mitochondria are the extra-nuclear source of DNA in cells and play an important role 
in cell death susceptibility,  oxidative stress regulation, metabolism, and signaling 
in normal cells. Because of this, its dysfunction can contribute to the progression of 
cancer and metastasis. Also, mtDNA mutations have been reported in many cancers, 
followed by altered mitochondrial activity and cellular signaling . This increase in 
mtDNA mutation is due to the proximity of the genome to the OXPHOS system 
which are thought to be more in extent than mutation nuclear. These mutations do not 
inactivate energy metabolism but change its state. Therefore, it is not surprising that 
the function of mitochondria is vital for cancer cells, in addition to understanding the 
mechanisms of mitochondrial function in the process of tumor formation and cancer 
progression is essential for cancer treatments.
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INTRODUCTION
Mitochondria is tubular organelles and 0.5 to 3 µm 

long (1). They have outer mitochondrial membrane 
(OMM) and inner mitochondrial membrane (IMM) 
which surround intermembrane space (IMS). 
Mitochondria matrix is in the inner area of organelle. 
OMM is considered a surface for exchanging and 
signaling (2). IMM has low permeability and is a 
place where electron transport chain (ETC) takes 
place and ATP and superoxide are produced (3, 
4). In addition, mitochondria have roles in many 
important cell activities such as cell cycle control, 
apoptosis control and cell proliferation(5). Matrix is 
an area for mitochondrial DNA (mtDNA) replication, 
transcription , macromolecules synthesis and the 
reactions of tricarboxylic acid (TCA) cycle (6). The 
phrase “mitochondrial medicine” was coined in 1962 
by Rolf Luft in his clinical report related to increased 
non-thyroid metabolism (7). A large number of specific 
syndromes are concerned with clinical mutations 
of mitochondrial diseases, that is why mtDNA is 
described as pathogenic Pandora’s box (8). Due to 
mitochondria’s important roles as in apoptosis, it 
is not wondering that mitochondrial disorders have 
impacts on diseases such as cancer, and mitochondria 
have been considered in relation to neoplasia (9-
11). In early 1920, Warburg was a pioneer in studies 

referred to mitochondrial respiration. He suggested a 
mechanism for explaining mitochondria contribution 
in the carcinogenic process (12). Warburg reported 
that tumors manufacture extra lactate in the hypoxia. 
This findings became known as “Warburg effect”. He 
explained it as mitochondrial dysfunction(13). In the 
field of “oncologic mitochondria” polymorphisms and 
specific mutations which are important for diagnosis 
and prognosis are studied and analyzed (14). In this 
review, we examine the oncological mechanisms 
of mitochondria involved in the development and 
progression of carcinogenesis.

mtDNA mutations
Mitochondria are the extra-nuclear source of DNA 

in cells (15). mtDNA is a double-stranded circular 
molecule which has 16569 base pair and contains 37 
genes for expression 22 tRNAs, 2 rRNAs (12s and 16s) 
and 13 crucial polypeptides for OXPHOS system(16).  
mtDNA mutations are thought to be caused by the 
nearness of the genome to the OXPHOS system, which 
is located in the IMM of the mitochondria. Therefore, 
it makes mitochondria vulnerable to leakage of 
reactive oxygen species (ROS) while OXPHOS 
function. This increase in mtDNA sensitivity leading 
to several mutations which are thought to be more in 
extent than nuclear DNA(17) The mtDNA has unique 
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characteristic that distinguish it from the nuclear 
genome. It is inherited natively and there are several 
hundred in one cell. In addition to, based on tissue’s 
requirement to energy, The count of copies varies in 
several cell types (18). Displacement loop (D-loop) 
is the sole majer non-coding area in mtDNA. D-loop 
is shaped by the relocation of two genomic strands 
and the involvement of a third strand of DNA and 
is a 1.1 kb area which contains significant control 
components for DNA transcription replication in 
Mitochondria (19). Also, many wrong mutations 
identified in the neoplasm of primary human areoften 
found in non-coding D-loop region. These mutations 
lead some shifting in the framework of mtDNA (20).
For instance, mtDNA mutations in D-loop region 
is a commonplace in liver cancer in a way that in 
one study 68% of patients were diagnosed with this 
mutation(21). Similarly, some prostate cancers are 
associated with mutations in the D-loop region of 
Complex I (22). Pathogenic mutations in mtDNA are 
mainly associated with changes in electron transport 
chain (ETC) subunits (23). For example, some neural 
cancers have mutation in succinate dehydrogenase 
(SDH, complex II) (24). Mutations in different coding 
and control regions of mtDNA have reported in cancer 
cells of intestine (20), prostate cancer (22, 25) and other 
types of solid tumors (25). Oncocytoma is a rare and 
benign tumor in most regions of epithelium associated 
with defective inspiration of mitochondria caused by 
pathogenic mutations in mitochondria genome and 
the accumulation of defective mitochondria (26). 
Furthermore, mtDNA has a significant role in cell 
sensitivity to cancer treatment’s agents (27). For 
instance, reduction or deletion of mtDNA is effective 
in carcinogenesis or progression of gastric carcinoma 
(28). In addition, the results of a study indicate that 
patients with high level of mtDNA are at higher risk 
for colon cancer(29). Similarly, the results of another 
study indicated that a high level of frequency occur 
in the structure of mtDNA during colon cancer 
development (30). For this reason, looking for 
mutations in mtDNA structure would be an early 
diagnosis for cancer. Additionally, applying mutations 
or polymorphism patterns in mitochondrial genes of 
tRNA such as A12308G, a polymorphism mutation in 
V-loop tRNALeu(CUN), is developing rapidly as a biologic 
marker in a variety of cancers , because tRNA genes 
accomplish a variety of roles, including processing 
and translation considered important constituent of 
mitochondrial protein synthesis (31). Mutations in 
mitochondrial genes which are encoded by nuclear 
DNA is also associated with cancer (32). mutations 
of nDNA genes involved in mitochondria metabolism 
inclusive fumarate hydratase (FH), Isocitrate 
dehydrogenase (IDH1) , (IDH2) and succinate 
dehydrogenase (SDH),  increase succinate, fumarate, 

or R(-)-2-hydroxyglutarate level. These metabolism 
changes can inhibit different dioxygenases relied on 
α-ketoglutarate. Also, they can activate stress reaction 
pathway of NFE2-related factor 2 (NRF2) (33). All of 
these effects can lead to tumors.

Mitochondrial ROS (mtROS)
The mitochondrial genome is prone to mutations 

due to the high level of production of reactive 
oxygen species (ROS) in this organelle, along with 
the low level of DNA repair (34-37) and it can be 
the most significant stimulus to develop cancer and 
its progression to malignancy(38). ROS is mainly 
generated by mitochondria. Superoxide is released as a 
byproduct in oxidative respiration (39). In general, ROS 
is in the form of superoxide (°- O2), hydroxyl radical 
(OH) and hydrogen peroxide (H2O2) (3). Two sites 
in respiration chain included complex I and complex 
III are suggested as the main source of mitochondria 
ROS (mtROS) (40-42). ROS can be generated in The 
tricarboxylic acid cycle or ETC pathway. However, 
it is mainly generated in ETC by electron leakage 
at connecting sites of ubiquinone in complex I (IQ 
site) and complex III (IIIQ site) process electron 
transporting  (43). Superoxide production is completely 
reduced or partially reduced primarily by the donation 
of an electron from electron carriers(3). Due to its high 
reactivity, °- O2 is immediately converted to H2O2 under 
the catalysis of mitochondrial SODs. There are SOD1 
in intermembrane space and cytosol which inactivate 
superoxide generated by complex III in ETC. While 
SOD2s are in mitochondrial matrix and they inactivate 
superoxide generated by complex I and complex III 
(3). In addition to connective sites for ubiquinone in 
complex I and complex III of ETC, other sites which 
generate ROS are marked: Flavin in complex I (IF site), 
electron which transfer flavoprotein Q oxidoreductase 
(ETFQOR) in FAO, pyruvate dehydrogenase, glycerol-
3-phosphate dehydrogenase and 2-Oxoglutarate 
dehydrogenase (44). H2O2 ,which is semi-resistant, can 
exit mitochondria and release to cytosol and nucleus 
where it can act (45). H2O2 reaction with phosphatases 
including protein kinase phosphatase activated by 
mitogen (MKP) can inhibit their dephosphorylation. 
For instance, it activates cJun N-terminal kinase 
(JNK) (46). Hypoxia increases production of ROS in 
complex III which leads to the accumulation of HIF-
1α protein responsible for hypoxic response. This 
response dies out in cells without mitochondrial DNA 
(47). Mutated mtDNA by ROS leads to invasion and 
metastasis in lung and breast cancer cells (48, 49). 
The results of a study indicate that ROS can increase 
ΔmtDNA4977 mutation in gut cancer (50). Also, it has 
been suggested that the increase of ROS generation 
as an essential factor in tumorigenesis is involved in 
p16ink4a and p53 inactivation (51). Additionally, same 
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as ROS importance in tumorigenesis. Mutations in 
the promoter of mitochondrial manganese superoxide 
dismutase gene have been observed in a number of 
tumors such as prostate cancer (25, 52). In a study, 
it has been showed that critical mutations of COI in 
mtDNA related to prostate cancer, increase ROS 
generation and their in vivo development (25). Also, 
ROS generation in cancer cells inhibition caveolin 1 in 
Stromal fibroblasts and it in intensifications mitophagy, 
reduce mitochondrial function and increases lactate 
production in these fibroblasts. Secreted lactate from 
stromal cell, amplifies oxidative metabolism of cancer 
cells which leads to tumor development, which is said 
”Reverse Warburg effect” (33).

Mitochondrial Oncometabolites
Dominant mutations in mitochondrial enzymes led to 

the identification of mitochondrial signaling molecules 
named oncometabolites. Among metabolic pathways 
in mitochondria, tricarboxylic acid (TCA) cycle is 
a focal point in oncology. Mutations in the enzymes 
of TCA cycle are found in human cancers with the 
nucleus code of Isocitrate dehydrogenase 2 (IDH), 
succinate dehydrogenase x (SDH) (SDHA-SDHD and 
SDHAF2) and fumarate hydratase (FH) (53). Isocitrate 
dehydrogenase (IDH) catalyzes reverse transformation 
of Isocitrate to 2-Oxoglutarate (OG). In eukaryotes, 
IDH3 is isoform dependent on Nicotinamide adenine 
dinucleotide (NADH) IDH1 and IDH2 are isoforms 
dependent on Nicotinamide adenine dinucleotide 
phosphate (NADPH). Cytoplasmic NADPH-
dependent isoforms (IDH1) and mitochondrial 
NADPH-dependent isoforms (IDH2) have been 
reported in different tumors such as colon cancer (54), 
prostate cancer (55), glioblastoma (56), acute myeloid 
leukemia (57) glioma (58), acute lymphoblastic 
leukemia B (55), cholangiocarcinoma in liver (59)
and osteosarcoma (60). Oncogenic mutations provide 
neomorphic activity for IDHs which convert OG to 
R-enantiomer 2-hydroxyglutarate (R-2HG) instead 
of isocitrate to OG conversion. R-2HG accumulates 
in cancer cells up to millimolar level (61, 62). Cells 
incubation with R-2HG blocks the differentiation of 
blood-forming cells led to blood cancer (63). This 
weak metabolism is at the moment considered as a 
main agent in the carcinogenic activity of mutated 
IDHs. Succinate dehydrogenase (SDH) is a complex 
of enzymes, which is bond to inner membrane of 
mitochondria and converts succinate to fumarate. It is 
considered the only known enzyme in respiration chain 
which is encoded completely by nDNA and has no 
proton pumping action. Inherited scattered mutations 
in SDH subunits are associated with cancers such as 
hereditary paraganglioma, pheochromocytoma  (64), 
kidneys cancer (65), gastrointestinal stromal tumor 
(66) and breast cancer (67). Most of the oncogenic 

activities of SDH mutations have been attributed 
to succinate metabolism which accumulate in cells 
without SDH. Carcinogenic role of succinate is 
primarily associated with PHDs inhibition and HIF 
stabilization (68). Also, it has recently been showed 
that succinate is an epigenetic hacker (69) which leads 
epigenetic changes overlapped with observations 
of mutated IDH in cancers (70). Fumarate hydratase 
(FH) converts fumarate to malat. Germinal mutations 
in FH discovered in renal cell cancer and hereditary 
leiomyomatosis (71). Also, it was found that FH in 
Glioblastoma (72), non-Myc-amplified neuroblastoma 
has been removed (73) and sporadic clear cell 
carcinoma (74). So that, partially of its tumorigenic 
action has been attributed to atypical aggregation of 
fumarate in cancer cells with deficient amount of FH 
that reaches up to millimolar level (75). There are 
some similarities between fumarate and 2HG. That 
is why fumarate can inhibit  different OG-dependent 
enzymes including PHDs (76). Furthermore, fumarate 
is an α,β-unsaturated electrophilic metabolite which 
can covalently bind to cysteine protein remainders by 
succination (77).

Carcinogenic signaling pathways and regulation of 
metabolism

Regulation of energy metabolism can be found in 
triple transcription factors: p53, HIF-1 and c-MYC. 
Oncogenic changes include an accidental system of 
deletion and duplication mutations in genes. Many of 
the carcinogenic genes and those who inhibit tumors 
are along with signaling pathways that regulate 
p53, HIF-1 and c-MYC (78). The main activator is 
mitochondria biogenesis is c-MYC in cancers. It is 
a transcription factor which regulates cell cycle, cell 
growth, metabolism and apoptosis widely. More than 
400 mitochondrial genes targeted by c-MYC have been 
discovered. Primary studies indicated that Increase and 
loss of c-MYC increase and decrease mitochondrial 
mass, respectively (79). HIF-1 and c-MYC are known 
as the two major factors in glycolysis stimulation by 
direct or indirect activation of glycolytic genes. These 
two transcription factors coordinate the expression 
of glycolytic key enzymes such as LDHA, TPI1, 
PFK1 and HK2 in other tumors (80-82). In contrast, 
p53 suppresses glucose absorption by inhibiting the 
transcription of glucose transporters such as Glut1 
and Glut4 (83, 84) directly and by suppressing Glut3 
expression (84). Glut3 is a target gene for NF-κB and 
p53 blocks NF-κB activating. As a result, it reduces 
glut3 transcription and expression considerably (84). 
Also, p53 induces TP53-induced glycolysis and 
apoptosis regulator (TIGAR) expression to decrease 
glycolytic speed of cancer. TIGAR can lower ROS 
levels and reduce sensitivity to p53 and other apoptotic 
signals related to ROS and may be an important 
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component in mediating the suppressive effects of p53 
tumor (85). Recent studies indicate that the increase in 
oncogenes function or inhibitor of tumor suppressed 
genes regulate high levels of glycolytic in tumor cell 
(86). Because of this reason, signaling molecules 
associated with cell proliferation such as PI3 and 
KRAS are deliberate vital regulators in metabolic 
pathways (87). In addition, it was reported that Akt 
oncogene which often increased in cancer cells has 
a straight stimulated action on glucose metabolism 
in cancer cells. Akt signaling is regulated by the 
activation of growth factor receptor. Pathway of Akt 
signal transfer involves the activation of oncoproteins 
and the inhibitor of tumor suppressors (88). PI3K/Akt 
signal which is in the downstream of tyrosine kinase 
receptor (RTK), increases glucose absorption through 
GLUT1 carrier and as a result increases glycolysis. 
Branches of glycolytic metabolism contribute to the 
synthesis of nucleotides and amino acids (89). The 
activation of Akt signaling pathway is a repetitive 
molecular shift in destructive tumors. Thereupon, 
targeting Akt signaling pathway is a sensible approach 
to cancer treatment (90). One of the main pathways 
in substances absorption into cells is mammalian 
target of the rapamycin (mTOR) which is located on 
the downstream of PI3K/Akt signaling. mTORC1 
combines nutrients and intracellular energy signals with 
mediated upstream signals of PI3K/Akt growth factor 
receptor through a network of downstream signaling 
pathways. So it regulates a complex of anabolic and 
catabolic reactions(91). In cancer, the overactivity of 
PI3K/Akt, along with reduced regulation by AMP-
kinase (AMPK), leads to mTOR overactivity (92)
and mTOR signaling partly induces the biogenesis of 
mitochondria through proliferator-activated receptor 
gamma coactivator-1 alpha (PGC-1α) (93) which is a 
central regulator in mitochondrial biogenesis through 
interaction with several transcription factors. PGC-1a 
levels often show tumor correlation to mitochondrial 
mass. High level of GPG-1a expression leads to 
mitochondrial inspiration (94). Furthermore, PGC-
1α in renal carcinoma cells decreases by hypoxia 
inducible factor-1 alpha (HIF-1a), which is activated 
in hypoxia state. So it makes some changes in 
glycolytic metabolism in hypoxia state (95). Also, 
mitochondrial PGC-1a-dependent biogenesis 
supports the growth of cancer cells which is a key 
step to metastasis (96). Cancer cells can adapt their 
mitochondrial function based on the special stress 
in environment. For instance, overregulation of 
c-Myc and the expression of glycolytic gene lead 
to resistance to metformin, complex I inhibitor, in 
cancer cells of pancreas. c-Myc uses mitochondrial 
respiration actively due to PGC-1a expression (97). 
Thus, control and signaling pathways of metabolism 
is a critical point in cancer treatments.

Escape from apoptosis
The hallmark of cancers is their ability to escape 

from apoptosis, a process which has a close 
correlation with mitochondria. The member of Bcl-
2 family such as Bak and Bax enter OMM and they 
become to some oligomerizations to produce mediate 
mitochondrial outer membrane permeabilization 
(MOMP).  As a result, by the formation of pores and 
the release of cytochrome c from the mitochondria 
into the cytosol, caspases are activated and apoptosis 
happens (98) Cancer cells often block apoptosis by 
modulating of anti-apoptosis proteins such as BCL-2 
which prevents MOMP production (99). Many of the 
studies have indicated that overregulation of BCL-2 
anti-apoptosis proteins is a common property among 
cancers. Modulating mechanisms are different but 
they include enhancing of copy numbers, transcription 
regulation (by the use of oncogenic signaling) or, 
erroneous regulation of microRNAs which suppress 
the expression of BCL-2 anti-apoptosis protein (100, 
101) For instance, in a study it has been showed that 
cancer cells have some enhancers in the vicinity 
of MCL1 and BCL2L1 anti-apoptosis genes that 
require the expression of these genes to survive (100). 
In addition, cancer cells inhibit caspase function 
following the MOMP (102). These cells inhibit caspase 
function through different ways. They turn off APAF-
1 by epigenetic and phosphorylation so they reduce 
apoptosis reaction. Besides, cytochrome c can be 
targeted after MOMP by proteasome and be degraded. 
As a result the The activity of proteins involved in 
apoptosis remains ineffective (103). Caspase function 
can be inhibited directly by XIAP and indirectly by 
c-IAP1 or c-IAP2 through their ability to bind and 
neutralize XIAP SMAC and Omi inhibitors (104).

Mechanisms of Metastasis by Mitochondria
A mechanism named mitochondrial transmission 

supports tumor metastasis and invasion widely. 
Mitochondrial transmission occurs in cells which 
are not able to have aerobic respiration due to the 
defect in their mtDNA (105). mtDNA transmission 
from host cell to the tumor cell increases tumor 
ability  because cancer cells reduce respiration, and 
horizontal transmission in these cases increases the 
invasion of cancer cells. It also protects cancer cells 
from chemotherapy (106). Additionally, in vivo 
transmission of mitochondria leads to recurrence 
of the disease. It generally increases the aptitude of 
tumor cells to overcome adverse condition by altering 
metabolism (107). So, in a study it has been reported 
that mitochondrial transmission in tumor models 
of mice is contributed to essential consequences in 
functions for tumor growth and metastasis (108). The 
studies indicate that syntaphilin (SNPH) is involved 
in mitochondria attachment to microtubules and it is 
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the main regulator in mitochondrial transmission and 
tumor invasion (109). Hypoxia is also controls the 
transmission of mitochondria. Tumor cells reduce 
the level of SNPH protein and mRNA which increase 
invasion in glioblastoma cells. Furthermore, tumors 
stabilized by HIF-a reduce SNPH which shows the 
critical role of SNPH in metastasis (109). Another 
involved factor in metastasis is mROS. mROS caused 
by oxygen deficient activates HIF-1 which facilitates 
metastasis by increasing glycolyticenzymes expression 
due to the altered metabolism of OXPHOS. In contrast, 
HIF-1 reduces mROS generation and facilitates tumor 
growth and metastatic cells residue which indicates 
the functional role of mROS in different cancers (110). 
Therefore, dispersion of metastasis is difficult by ROS. 
High levels of ROS inhibit metastasis in melanoma 
while ROS increases metastasis in other cancers (111).
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