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Pharmacogenomics is the application of genetic and other omics data to specific 
medication selection and application for avoiding adverse drug reactions (ADR) 
and increasing drug potency. Pharmacists are playing an increasingly important role 
in optimizing medicine usage based on genetic testing results. Effect elucidation, 
genotype-guided medication and modification, medication asset, adverse reaction 
monitoring, and patient education are all tasks performed by pharmacists. Microbial 
invasion leads to infectious diseases, which have afflicted mankind from the early 
era, and is still impacting the health and one of the major causes of morbidity as well 
as mortality in the society. The response to therapy and the prognosis of an illness 
are also influenced by an individual’s genetic makeup. The data retrieved by genome 
sequencing of pathogen and humans is one further step forward in examining host-
parasite interactions. Consideration of microbial pathogenicity factors, host genetic 
makeup, and the genetic mechanism involved in disease pathogenesis has paved 
the way for novel molecular approaches for medications, disease markers, and 
vaccinations to be discovered. The regulatory approval of amplification tests that are 
comparable or patronizing to existing gold standard procedures is now assisting the 
advancement of molecular diagnostics for infectious diseases. Progress in genetics 
and computation is altering the scale at which biological systems are depicted, and 
researchers may now expect a precision-focused variety in how they prepare for and 
respond to infectious diseases. This review will look at the origins and evolution of 
pharmacogenomics, as well as some of the controversies surrounding its therapeutic 
applications.

INTRODUCTION
Pharmacogenomics is the study of how genomics 

and other “omics” play a crucial role to individual 
differences in therapeutic outcomes characteristics 
(1-3). The investigation of genetic characteristics that 
impact a person’s pharmacological reaction is known 
as pharmacogenetics. Pharmacogenomics is the use of 
genetic data to guide medicine and dosage selection 
based on a person’s genetic composition.

Through a wide range of data, precision and 
personalized medicine aims to provide a platform for 
effective health and disease management. Retrospective 
studies of healthy subject for better understanding 
of transformation from healthy functional to disease 
states identify the individuals who are at risk for the 

disease, as well as suggesting precise treatment based 
on dynamic and growing data from the sets of both 
individual trials and population-based studies are all 
triggering inputs for driving precision medicine (4).

Rapid advancements in biotechnological and 
informatics techniques, particularly in the domains 
of genetics, genomics, and proteomics, have surfaced 
the path for detecting, eliminating the cause, and 
enhancing human health over the last several decades. 
Treatment for a patient can only be effective if the 
condition is diagnosed quickly and the causative agent 
is identified, which is especially critical in the case of 
infectious disorders. The discovery of fresh insights 
into the genome and structural features of pathogen 
macromolecules has given rise to new hope for the 
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treatment of debilitating illnesses. System biology 
understanding of microbial diseases is still evolving, 
and the data provided largely belong to few human 
diseases. The fast growth of NGS technology has 
resulted in the creation of a contemporary information 
system, and with further improvement of such edge 
cutting techniques in the future era, there is optimism 
that all illnesses will be eradicated. We will soon 
have entire sequences of whole transcriptomes, much 
as we did a decade ago with genome sequences, and 
proteomic methods shall have the specificity, precision, 
and sensitivity of microarrays. There are also other 
techniques in the context of infectious diseases, 
such as metabolomics, glycomics, lipidomics, and 
phosphoproteomics, which are still at various phases of 
development, but we are moving in the correct way (5).

Interactions between the host and the pathogen 
Transcriptomics and functional genomics are 
revolutionizing the concept of illness caused by 
microorganisms and aiding our research into the causes 
of infection vulnerability in humans.

Transcriptomics

Scientists have created and applied transcriptomics 
to improve our understanding of infectious diseases. 
One of them is cDNA microarray technique widely 
utilized to investigate the host-parasite interaction. The 
study focused on the effect of infection on the gene 
expression of the host cell. The response of the host 
cell was measured using wild type strain and isogeneic 
mutant. The key findings of these investigations 
revealed how pathogen virulence factors alter the 
expression of host cell components (6).

Functional Genomics
By modifying biological pathways, functional 

genomics has evolved the technique to understand 
the pathogenesis of disease. Over the recent decade, 
RNA interference (RNAi) technology has advanced 
dramatically, allowing for extensive reverse genetic 
screening in vivo and model species (7).

RNA interference (RNAi) is a technique that 
employs to target mRNA sequence using dsRNA 
with complementary sequence which downregulate 
the target gene expression. Long sequence of dsRNA 
may form interferons and other nonspecific reactions 
in host cells which can be overcome  using tiny 
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interfering RNA or shRNA (small hairpin RNA). RNA 
interference (RNAi) screening with RNA probes, 
which causes host genes to lose function, contributed 
to the discovery of Host Resistance Factors (HRFs 
). It is made possible when these inhibitory factors 
are muted, resulting in increased infecting pathogen 
multiplication. It may also detect Host Susceptibility 
Factors (HSFs ) and permissive factors, which, when 
muted, reduce pathogen replication. Because of the 
off-target siRNA impact, RNAi screens still have 
significant limitations (8). The data must be integrated 
which is generated from omics technologies to make 
system biological techniques such as RNAi well 
efficient in uncovering processes in the host-parasite 
interaction and hence deciphers cures for infectious 
diseases. In addition, utilizing transformed pathogens, 
cellular RNAi knockdowns, or humanized animal 
models using mice or primate infection models, 
numerous rounds of biological experiments are 
necessary. The inferences drawn from the verified data 
would aid in the development of prediction models, 
which might lead to a better understanding of the host-
parasite interaction.

Infection Susceptibility
A common aspect of many human infections is that 

only a small percentage of those who are exposed 
develop clinical illness. For a long time, heritable 
variables were thought to have a prominent role in 
explaining inter-individual variations in susceptibility: 
for example, the early discovery that TB cases 
concentrated within households led to the belief that 
tuberculosis was an inherited illness. However, the 
later identification of bacteria such as Mycobacterium 
tuberculosis as agents of infectious illness, as well as the 
experimental proof of the communicable characteristic 
of diseases, shifted attention to the pathogen (9), 
potentially overlooking the role of host factors.

It is clear from the history of infectious diseases in 
humans that not everyone in a particular community 
gets infected. Both the pathogen’s virulence and 
the host’s susceptibility are required for an infective 
organism to induce an infection. Scientists are working 
to identify genetic variables that influence the host’s 
innate as well as adaptive immunity and so decide 

pathogen protection. The genetic determinants and 
biochemical mechanisms of disease susceptibility have 
been discovered using animal models of infectious 
diseases, particularly mouse models (10).

As automated biotechnology and innovative 
calculation tools evolve, finding genetic signs of 
natural selection is becoming progressively viable 
(11,12). The capacity to conduct Genome Wide 
Association (GWAS ) studies and large-scale genetic-
diversity valuations has resulted in an exponential 
rise of publically available genetic data (13), as well 
as insights into genomic correlation both within and 
between populations (14-16).

Precision medicine has already revealed critical 
information about disease causes, biological targets 
that might stop disease development, and biomarkers 
that indicate therapeutic response. In response to this 
common understanding, significant progress has been 
made in improving patient treatment outcomes (17–
19). Personalized medicine will navigate current drug-
selection programs such as pharmacogenomics and 
patient-derived primary cultures (20–26) with current 
sources of information and consolidation of data.

It is well-known that understanding the pathogen’s 
mode of action and identifying susceptibility genes are 
critical for disease management in the terms of public 
health efforts for prophylaxis, diagnosis, detection, 
and targeting of susceptibility groups in case of an 
infectious disease.

Pharmacogenomics in the management of infectious 
diseases

Pharmacogenomics applicability to infectious 
disorders is still in its early stages. In June 2000, the 
human genome was fully mapped (27-29). At least 88 
bacterial entire genomes have also been sequenced, 
the majority of which are serious human diseases 
(30). Researchers can find novel therapeutic targets 
thanks to the availability of genetic data. As automated 
biotechnology and innovative calculative tools evolve, 
discovering genetic signs of natural selection is 
becoming progressively viable (31-32). The capacity 
to conduct GWAS studies and large-scale genetic-
variation probes has resulted in an algorithmic growth 
in publically available genetic data (33), as well as 
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an escalation in genomic correlation both inside and 
between populations (34–36). These findings highlight 
the therapeutic importance of discovering natural 
selection genetic consequences, such as vulnerability 
loci for infective illnesses that plague mankind (37) 
and responses when exposed to xenobiotics (38). 
These breakthroughs have paved the way for precision 
medicine, which considers a person’s genetic statistics 
when designing clinical care (39,40) and is critical 
in the quest for individualized or precision medicine. 
In this respect, genomics offers the ability to advise 
doctors and accord to precision medicine on various 
fronts, including illness prognosis, treatment response, 
and the prophylaxis of adverse drug reactions (ADRs) 
(41).

Using Genomic Data to Identify Infectious Pathogens
The introduction of large -scale lateral 

pyrosequencing in 2005 signaled the initiation of 
the next-generation sequencing era, the first major 
advancement in sequencing technology after the 
advent of Sanger sequencing in the 1970s (42,43). The 
competency of next-generation sequencing increased 
dramatically in the early years, with yearly sequencing 
costs diminishing by as much as 80% (44). In public 
health, these developments were both exciting and 
intimidating due to the barriers — executing next-
generation sequencing may require expenditure in 
sequencing tools along with cutting edge computing 
armature to move, store, and analyze large volumes 
of sequence data (45). Integrating bioinformatics, 
a relatively new subject in public health, was also 
critical. Nearly all infectious disease initiatives at the 
CDC now include pathogen genetics (46).

Antimicrobial Resistance is Determined by Pathogen 
Genomic Information

Fleming anticipated the possibility of bacteria 
developing resistance to penicillin shortly after its 
discovery, and now we know that drug resistance (AMR) 
has evolved to almost every licensed antibacterial 
agent introduced. The beneficial function of antibiotics 
in treating bacterial illness was taken for granted 
during the golden era of antibacterial discovery, when 
numerous new groups were found and development 
of identified groups was quick. Antibiotics help lessen 

the bacterial infection load. Beta-lactam antibacterials 
(including penicillin, cephalosporin, and carbapenem), 
amino glycosides (including tobramycin), tetracycline, 
macrolides (including erythromycin), glycopeptides 
(including vancomycin), polymyxins (including 
colistin), and fluoroquinolones, all was expanded and 
launched between  the 1940s and 1980s (including 
ciprofloxacin). Pleuromutilins, lipoglycopeptides, 
and oxazolidinones are three new antibiotic classes 
that have been introduced since 1990, though several 
variants of earlier classes have also been introduced. 
It took around two years to develop drug resistance  
against the Beta-lactam classes between 1940 and 
1990, and nine to 16 years to develop against the other 
classes. Resistance to the oxazolidinone linezolid has 
emerged since its introduction in 1990(47). 

Using omics technology, the mechanisms of 
acquiring resistance have been explained. Here 
are a couple such instances. Fluoroquinolones are 
antibiotics that inhibit bacterial DNA replication of 
bacteria by binding to DNA gyrase and topoisomerase, 
two enzymes involved in bacterial DNA replication. 
The alteration in the quinolone-binding location in 
the enzymes indicated overhead causes quinolone 
resistance in bacteria. A modification in the amino 
acid at the location of fluoroquinolone attachment 
to enzymes occurs as a result of the mutation. When 
both bacterial enzymes are altered, the quinolone 
antibiotic develops high-level resistance, impacting 
the prognosis of infection, as opposed to the case when 
just one of the enzymes is changed (48). Antimicrobial 
resistance in invading organisms may now be detected 
via a genetic test. The information is crucial since it 
will support infection treatment and management. 
After 24 hours of culture in the presence of oxacillin, 
the MRSA (methicillin-resistant Staphylococcus 
aureus) phenotype is observed. Prior to the advent of 
omics technology, the only way to discover resistance 
was through a time-consuming culture test. Changes 
in the penicillin-binding protein PBP2a govern MRSA. 
PBP2a production is regulated by the gene mecA. In 
reference laboratories, a polymerase chain reaction 
assay is utilized to identify the existence of mecA, but a 
commercially created kit can do so using a fluorescein-
labeled mecA probe. When employed for analysis, 
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both DNA probe and PCR technique may identify 
the mecA-resistant gene presence within 3 hours. 
Antimicrobial resistance in infections may be detected 
quickly, allowing patients to receive appropriate 
therapy (49).

Infectious Disease Treatment Response is determined 
by Genomic Factors

The analysis of the host genomics becomes critical 
in order to properly comprehend pharmacological 
effects and, as a result, create more effective treatment 
strategies. The ultimate objective is to understand the 
system biological effect, but the trend of single gene 
effects is equally crucial.

The gene producing interleukin-10 (IL-10), a Th2 
cytokine, is one of many polymorphic cytokine genes. 
The development of significant numbers of antibodies 
is linked to Th2 responses. Th1-stimulating cytokines 
suppress Th2 responses, and vice versa. Interferon 
alfa is a drug that stimulates cell-mediated immune 
responses and antiviral activity to treat chronic 
hepatitis C. Although interferon alfa is the most 
common treatment for chronic hepatitis C, reaction 
proportions are only approximately 50%, especially 
when combined with other antiviral drugs (50).

The cytokine environment of an infected person 
can indicate a strong cell-mediated immune response. 
Patients suffering from chronic hepatitis C who had the 
IL-10 genetic polymorphism, which results in reduced 
IL 10 expression, were five times more likely to have 
a good response to interferon alfa than those who did 
not have this polymorphism (51). Individuals with 
a genotype linked to high IL-10 production, on the 
other hand, were substantially less likely to respond 
to interferon alfa therapy (odds ratio, 0.22). The IL-
10 genotype might be used to predict interferon alfa 
response. Indeed, an alternative therapy should be 
developed for those with chronic hepatitis C who have 
the IL-10 polymorphism, which is linked to increased 
cytokine production.

Immunologic memory is used in vaccines to create 
immune response, which protect us against disease in 
later exposures. To develop protective immunity, the 
immunological response to the vaccine should ideally 
mimic the one caused by the natural illness (52-56). 

Some people who appear to be healthy do not produce 
an immunological response to a vaccination. A good 
example is the reaction to the measles vaccination.

A study of healthy school children’s antibody 
responses to the measles vaccination was done (56). 
Seronegative people were grouped in families, 
accounting for 10% of the population. This data 
strongly suggests a genetic influence. The researcher 
looked for a genetic influence and used HLA genes as 
a potential gene. Measles vaccination reactions were 
linked to both HLA class I and class II alleles. HLA-B7, 
HLA-B51, HLA-DRB1*13, and HLA DQA1*01, all 
was unified to a positive rejoin for the vaccination 
against (56-59). Homozygosity for HLA-B, HLA-DR, 
and HLA-DQA1 was linked to a lack of response to the 
measles vaccination (56,58).

It is possible that a lack of variety in antigen 
presentation is to blame for the low vaccination 
response. Use of vaccines as immune system probes 
is an innovative way to finding disease susceptibility 
genes. Vaccines are given to large groups of people. 
To track down the   in general population by using  the 
procedures presented, those who are not able to develop 
a protective immune response can be compared to 
those who do.

Infection Treatment: Host Genomics Determines Drug 
Treatment Response

Drugs used to treat any pathogenic infection can only 
be effective if we understand how the infection affects 
the host and pathogen at the genetic level and can 
explain host efficacy as well as toxicity. We examine a 
few key infectious diseases where pharmacogenomics 
research has resulted in a paradigm shift in disease 
therapy.

Pharmacogenomics in Treatment of Tuberculosis
Several DNA fingerprinting methods have been 

effective for subtyping Mycobacterial TB since 
the 1990s (60). Detecting groups of instances that 
might be linked to current transmission cases that 
require more intensive examination and possibly 
intervention is made feasible by identifying closely 
related strains (61). Whole-genome sequencing 
allows for considerably better subtyping than was 
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previously achievable, resulting in greater confidence 
in the inferred links between instances. Investigators 
in US TB control programs have now scaled up 
whole-genome sequencing to sequence isolates from 
all culture-positive cases countrywide, after utilizing 
it selectively for several years. Whole-genome 
sequencing has allowed public health officials in 
California to rule out more than half of probable 
outbreaks discovered by traditional genotyping, saving 
time and resources (Shaw T, California Department 
of Public Health: personal communication). Primary 
understanding in tuberculosis programs in the United 
Kingdom (62), Canada (63,64), and the Netherlands 
(65) has also confirmed that whole-genome sequencing
aids more accurate  investigations by extra precisely
defining outbreaks (62,63,65), providing insights into
transmission undercurrents (39,66), and occasionally
indicating the presence of previously unidentified
cases or possible “super-spreaders” that should be
highlighted for exclusion and cure (62,63). Whole-
genome sequencing can also reveal if recurring
instances are due to relapse, which offers valuable
insights into determining the efficacy of a program
(67). Countries which have high disease burden of
TB and are also  under developed countries, might
be in high incidence which bear the brunt  amount
of the world’s TB burden, the ability to prioritize
case investigations could be beneficial (68). In these
countries, though, a new request of NGS of M.
tuberculosis directly from sputum — could play an
even more remarkable role (69). Straight sequencing of
M. tuberculosis from smear-positive sputum samples
is now possible in research laboratory (71-72), but it is
expensive and time-consuming for normal healthcare
settings usage. If the method can be made applicable
in term of its cost effectiveness and practicality, it
will allow for quick drug susceptibility inference,
which is presently very accurate for most first-line
medications and will improve as more data becomes
available (70-73). In addition to aiding timely therapy
with appropriate drugs, next-generation sequencing
will reduce the need for routine phenotypic testing,
which is complex, tedious, and difficult to sustain in
resource-limited laboratory settings. Meanwhile, in
high-income nations, an intermediate technique is

already in use: whole-genome sequencing straight 
from early positive cells, a procedure that reveals 
drug susceptibility information weeks before standard 
test results are available (71). State Department of 
Health New York and Public Health Department, 
England (70) have received regulatory approval to 
forego traditional drug susceptibility testing of isolates 
predicted to be susceptible to all four first-line drugs 
(roughly 70 to 80% of all isolates) based on whole-
genome sequencing (70).

Amplicon sequencing, which includes targeted 
polymerase-chain-reaction (PCR) amplification of 
specific mycobacterial genes or marker sequences, 
followed by sequencing of the amplicons, is another 
promising option (74). Any sequence-centered strategy 
for figuring  susceptibility should be dependent on 
the constant updating of databanks containing linked 
genotypic and phenotypic data to remain relevant over 
time (72).
Pharmacogenomics in Treatment of Malaria

In 2010 and 2015, malaria occurrence and fatality 
rates raised  by 21% and 29%, respectively (75). 
Deep sequencing is being used to uncover the genetic 
background of P. falciparum, the parasite that causes 
malaria. Polymorphisms, physical and counterfeit 
number changes, all of which are important for parasite 
development, are being identified (76). MalariaGEN 
and other sequencing consortiums help us better 
understand the genetics of both the Anopheles vector 
and the plasmodium species. Polymorphism incidences 
may be utilized as indicators of high recombination 
rates, which is a key provider to immune evasion and 
treatment confrontation, according to a current study 
on genotyping accuracy utilizing in-depth sequencing 
of Plasmodium parental generations and their offspring 
(77). A research found 18 deletions in areas encoding 
multigene families that are linked to immune evasion 
using whole genome profound sequencing and 
microarray analysis (78). The investigators discovered 
chromosomal crossings in six of the deletions and were 
able to calculate P. falciparum mutation rates (78).

Human genomics has remained under use to find new 
malaria resistance loci that give 33% protection against 
severe malaria (79). Transcriptomics and proteomics 
are increasingly being used to investigate Plasmodium 
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pathogenesis. The genome-wide translational dynamics 
of P. falciparum were studied using bioinformatics and 
statistical models, revealing that parasite transcription 
and translation are firmly connected, resulting in a 
wide range of parasite gene expression patterns with 
great resolution (80). Polysome profiling has been 
done using ChIP-Seq and RNA sequencing to better 
understand the control of Plasmodium gene expression 
in humans. Bunnik et al. 2013 (81) found a delay in 
peak polysomal transcript profusion for multiple genes 
relative to the mRNA fraction, which they attributed 
to non-coding transcript substitute polysomal mRNA 
splicing processes.

P. falciparum expression patterns have also been
described using RNA sequencing, which has discovered 
unique gene transcripts, substitute splicing processes, 
and anticipated untranslated sections of certain genes, 
offering more data on parasite biology (82).

Yamagishi et al. (83) employed RNA sequencing 
to compare the transcriptomes of the human host and 
parasite. They found that some human and parasite 
genetic factors, such as TLR2 (Toll Like Receptors-2) 
and TIR domain-containing adapter molecule 2 
(TICAM2), were linked to clinical manifestations. The 
transcriptome of P. vivax was also studied using RNA 
sequencing, which indicated a hotspot of vir genes 
on chromosome 2, novel gene transcripts, and the 
existence of species-particular genes (84).

Pharmacogenomics in Treatment of Filaria
Filariasis, along with onchocerciasis and lymphatic 

filariasis (LF), is a neglected  chronic disease initiated 
by tissue-dwelling nematodes (filariae) which causes 
considerable health concerns, with a disease burden 
approaching 86 million  people worldwide (85). 
Onchocerciasis is triggered by Onchocerca volvulus, 
whereas LF is caused by three parasites Wuchereria 
bancrofti, Brugia malayi, and Brugia timori  (86). 
Filariasis elimination is difficult in resource-
constrained nations due to a lack of sensitive diagnostic 
instruments, effective therapies, and adequate control 
measures.

The genomes of W. bancrofti and O. volvulus have 
been sequenced, allowing for additional genomic 
research (87,88). Bioinformatics showed the existence 

of genes coding for host immune system controllers 
such as human-like autoantigens and serine and 
cysteine protease inhibitors (91-89).

The filariasis as disease and human as its host, 
both shall be remained linked together, according 
to molecular research and computational analysis. 
Preliminary studies have indicated that LF infections 
cluster in some families (90,91). These findings 
suggest that genetic variables play a role in LF 
infection control, affecting both the presence and 
severity of microfilariae. However, as with a tropical 
lymphedema (Podoconiosis) of non-filarial origin, a 
GWAS would be more thorough in demonstrating this 
genetic predisposition to Lymphatic Filariasis (92). 
Note that lymphedema, also known as elephantiasis, is 
one of the most common symptoms of LF and is caused 
by a clogged lymphatic system (93). Podoconiosis, 
unlike LF, is a non-communicable illness caused by 
soil elements such as aluminium and silica, which are 
prevalent in volcanic regions (94, 95). A 
comparative genomics-based investigation of 
Lymphatic Filariasis might aid in gaining a better 
understanding of the clinical symptoms.

CONCLUSION
Experience has demonstrated that infectious diseases 

will arise with greater vigor and ferocity. If diseases 
are not managed, they will have a significant impact on 
human wellbeing in terms of mortality and morbidity. 
Regardless of area, ethnicity, lifestyle, financial class, 
or ethnic origin, a developing microbial disease-
causing infection would affect people’s l ives. A s a 
result, the threat of infectious diseases is very serious, 
and its prediction as well as management is extremely 
difficult. In the future decades, major developments in 
genetics, genomics, and proteomics may be able to meet 
the challenge. These tools clearly have the prospective 
to transform the fields of diagnostics, therapy, as well 
as drug and vaccine research. The time has come to 
boost public health initiatives at the national and 
international levels, as well as omics research, in order 
to fully exploit the promise of systematic innovations 
that will lead to the era of personalized medicine based 
on pharmacogenomics.
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