Document Type : Original Article

Authors

1 Department of Microbiology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Biology, School of Science and Agriculture, Islamic Azad University, Roudehen Branch, Tehran, Iran

3 Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Abstract

Salmonella, a prominent foodborne pathogen, poses significant health risks, causing both intestinal and extra-intestinal infections. Recognizing the potential of lactobacilli as probiotics due to their ability to produce substances inhibiting multidrug-resistant bacteria, this study aimed to assess antibiotic resistance, pathogenic gene frequency, antibacterial effects of lactobacillus supernatant from kefir, and its impact on resistance and pathogenicity gene expression.
In Tehran hospitals, 150 isolates from 240 clinical samples were collected and identified as Salmonella Typhimurium using biochemical and serotype tests. Antibiotic sensitivity was assessed, and the frequencies of antibiotic resistance genes (tetA, tetB, and floR) and pathogenicity genes (sip, spvC, and invA) were investigated. Lactobacilli from kefir were isolated, and the minimum inhibitory concentration of lactobacillus supernatant was determined. The relationship between supernatant treatment and tetA and sip gene expression was examined using Real-time PCR.
Results revealed 38% of strains as Salmonella Typhimurium serotype, displaying high resistance to ampicillin, tetracycline, and nitrofurantoin. Pathogenicity genes invA and sip exhibited high frequencies of 100% and 70.2%, respectively. Lactobacillus supernatant showed an MIC of 80 μg/ml, effectively reducing tetA and sip gene expression by 42.2% and 55.7%, respectively.
In conclusion, the study underscores the high antibiotic resistance in Salmonella Typhimurium and suggests Meropenem, Trimethoprim Sulfamethoxazole, and Ampicillin-Sulbactam as effective treatments. Moreover, lactobacillus supernatant demonstrated significant potential against Salmonella Typhimurium, highlighting lactobacilli as promising probiotics. This health-oriented strategy presents a viable solution for treating Salmonella infections and preventing their spread.

Keywords

Main Subjects

1.Lanzarone G, Olivi M. The Prognostic Role of Cytogenetics Analysis in Philadelphia Negative Myeloproliferative Neoplasms. Medicina. 2021;57(8):813. [DOI: 10.3390/medicina57080813].
2.Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64-9.
3.Lasho T, Finke C, Hanson C, Jimma T, Knudson R, Ketterling R, et al. SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia. 2012;26(5):1135-7.
4.Killick SB, Wiseman DH, Quek L, Cargo C, Culligan D, Enright H, et al. British Society for Haematology guidelines for the diagnosis and evaluation of prognosis of Adult Myelodysplastic Syndromes. British Journal of Haematology. 2021;194(2):282-93.
5.Grinfeld J, Nangalia J, Baxter E, Wedge D, Angelopoulos N, Cantrill R, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379:1416-30.
6.Ok CY, Trowell KT, Parker KG, Moser K, Weinberg OK, Rogers HJ, et al. Chronic myeloid neoplasms harboring concomitant mutations in myeloproliferative neoplasm driver genes (JAK2/MPL/CALR) and SF3B1. Modern Pathology. 2021;34(1):20-31.
7.Bruneau J, Molina TJ. WHO classification of tumors of hematopoietic and lymphoid tissues. Hematopathology. 2020:501-5.
8.Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood, The Journal of the American Society of Hematology. 2014;124(7):1062-9.
9.Wong WJ, Hasserjian RP, Pinkus GS, Breyfogle LJ, Mullally A, Pozdnyakova O. JAK2, CALR, MPL and ASXL1 mutational status correlates with distinct histological features in Philadelphia chromosome-negative myeloproliferative neoplasms. Haematologica. 2018;103(2):e63.
10.Scott LM. The JAK2 exon 12 mutations: a comprehensive review. American journal of hematology. 2011;86(8):668-76.
11.Wong R, Sun S, Wang H-Y, Broome HE, Murray S, Thorson J. In Frame Calr Exon 9 Mutations: Often Ignored but Potentially Significant. Blood. 2018;132:5480.
12.Zulkeflee RH, Zulkafli Z, Johan MF, Husin A, Islam MA, Hassan R. Clinical and laboratory features of JAK2 V617F, CALR, and MPL Mutations in Malaysian patients with classical myeloproliferative neoplasm (MPN). International journal of environmental research and public health. 2021;18(14):7582.
13.Heppner J, Nguyen LT, Guo M, Naugler C, Rashid-Kolvear F. Incidence of myeloproliferative neoplasms in Calgary, Alberta, Canada. BMC research notes. 2019;12(1):1-5.
14.Kaifie A, Kirschner M, Wolf D, Maintz C, Hänel M, Gattermann N, et al. Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. Journal of hematology & oncology. 2016;9(1):1-11.
15.Yassin MA, Taher A, Mathews V, Hou H-A, Shamsi T, Tuglular T, et al. Myeloproliferative neoplasms in Asia, including Middle East, Turkey, and Algeria: epidemiological indices and treatment practice patterns from the multinational, multicenter, observational MERGE registry. Blood. 2018;132:5461.
16.Ashorobi D, Gohari P. Essential thrombocytosis. StatPearls [Internet]. 2021.
17.Belcic Mikic T, Pajic T, Sever M. CALR mutations in a cohort of JAK2 V617F negative patients with suspected myeloproliferative neoplasms. Scientific reports. 2019;9(1):1-9.
18.Loghavi S, Bueso-Ramos CE, Kanagal-Shamanna R, Young Ok C, Salim AA, Routbort MJ, et al. Myeloproliferative neoplasms with calreticulin mutations exhibit distinctive morphologic features. American journal of clinical pathology. 2016;145(3):418-27.
19.Lin Y, Liu E, Sun Q, Ma J, Li Q, Cao Z, et al. The Prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1–negative myeloproliferative neoplasms. American journal of clinical pathology. 2015;144(1):165-71.
20.Kim BH, Cho Y-U, Bae M-H, Jang S, Seo E-J, Chi H-S, et al. JAK2 V617F, MPL, and CALR mutations in Korean patients with essential thrombocythemia and primary myelofibrosis. Journal of Korean medical science. 2015;30(7):882-8.
21.Lieu C-H, Shen Y-J, Lai W-C, Tsai W-H, Hsu H-C. Prevalence of MPL W515L/K mutations in Taiwanese patients with Philadelphia-negative chronic myeloproliferative neoplasms. Journal of the Chinese Medical Association. 2010;73(10):530-2.
22.Akpinar T, Hançer V, Nalçaci M, Diz-Küçükkaya R. Kronik miyeloproliferatif neoplazmlarda MPL W515L/K mutasyonlari. Turk J Hematol. 2013;30:8-12.
23.Shams SF, Ayatollahi H, Sadeghian MH, Afzalaghaee M, Shakeri S, Yazdandoust E, et al. Prevalence of MPL (W515K/L) mutations in patients with negative-JAK2 (V617F) myeloproliferative neoplasm in North-East of Iran. Iranian journal of pathology. 2018;13(4):397.
24.Rabade N, Subramanian P, Kodgule R, Raval G, Joshi S, Chaudhary S, et al. Molecular genetics of BCR-ABL1 negative myeloproliferative neoplasms in India. Indian Journal of Pathology and Microbiology. 2018;61(2):209.
25.Xia D, Hasserjian RP. Molecular testing for JAK 2, MPL, and CALR in myeloproliferative neoplasms. American Journal of Hematology. 2016;91(12):1277-80.