Document Type : Review Article

Authors

1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Cell and Molecular Biology, Faculty of Biological Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran

3 Department of Biotechnology, Faculty of Basic Science, Ale-Taha Institute of Higher Education, Tehran, Iran.

Abstract

In this article, the features of DNA-functionalized goldnanoparticles (GNRs), including the size-dependent color, the amount of conjugated DNA, and the fluorescence quenchers will be described. DNA and aptamer conjugated GNRs can be applied for producing the colorimetric and fluorescent biosensors to detect all types of disease markers including DNA, RNA, protein and other small molecular metabolites.
The early phase of this work is performed in clean buffers and serum samples. DNA-conjugated GNRs delivery into the cells is recently used for intracellular diagnosis in personalized medicine. Simultaneously, DNA-functionalized GNRs can be used to deliver the antisense DNA for gene therapy applications.
With targeting both diagnosis and treatment applications, DNA- functionalized GNRs can be used as a suitable approach to reach theranostics purposes (diagnosis and treatment in a simultaneous manner).

Keywords

  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu
    J, et al. Metabolomic profiles delineate potential role for sarcosine
    in prostate cancer progression. Nature. 2009;457(7231):910-4.
    2. Wilson DS, Szostak JW. In vitro selection of functional nucleic
    acids. Annual review of biochemistry. 1999;68(1):611-47.
    3. Winkler WC, Breaker RR. Regulation of bacterial gene
    expression by riboswitches. Annu Rev Microbiol. 2005;59:487-
    517.
    4. Sharifi M, Hosseinali SH, Alizadeh RH, Hasan A, Attar F, Salihi
    A, et al. Plasmonic and chiroplasmonic nanobiosensors based on
    gold nanoparticles. Talanta. 2020;212:120782.
    5. Mohebbi S, Moghadam TT, Nikkhah M, Behmanesh M.
    RGD-HK Peptide-functionalized gold nanorods emerge as
    targeted biocompatible nanocarriers for biomedical applications.
    Nanoscale research letters. 2019;14(1):13.
    6. Tuerk C, Gold L. Systematic evolution of ligands by exponential
    enrichment: RNA ligands to bacteriophage T4 DNA polymerase.
    science. 1990;249(4968):505-10.
    7. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape‐controlled
    synthesis of metal nanocrystals: simple chemistry meets
    complex physics? Angewandte Chemie International Edition.
    2009;48(1):60-103.
    8. Dubertret B, Calame M, Libchaber AJ. Single-mismatch
    detection using gold-quenched fluorescent oligonucleotides.
    Nature biotechnology. 2001;19(4):365-70.
    9. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based
    method for rationally assembling nanoparticles into macroscopic
    materials. Nature. 1996;382(6592):607-9.
    10. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger
    RL. One-pot colorimetric differentiation of polynucleotides with
    single base imperfections using gold nanoparticle probes. Journal
    of the American Chemical Society. 1998;120(9):1959-64.
    11. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger
    RL, Elghanian R, et al. A fluorescence-based method for
    determining the surface coverage and hybridization efficiency
    of thiol-capped oligonucleotides bound to gold thin films and
    nanoparticles. Analytical chemistry. 2000;72(22):5535-41.
    12. Hurst SJ, Lytton-Jean AK, Mirkin CA. Maximizing DNA
    loading on a range of gold nanoparticle sizes. Analytical chemistry.
    2006;78(24):8313-8.
    13. Zu Y, Gao Z. Facile and controllable loading of single-
    stranded DNA on gold nanoparticles. Analytical chemistry.
    2009;81(20):8523-8.
    14. Bhatt N, Huang P-JJ, Dave N, Liu J. Dissociation and
    degradation of thiol-modified DNA on gold nanoparticles in
    aqueous and organic solvents. Langmuir. 2011;27(10):6132-7.
    15. Herdt AR, Drawz SM, Kang Y, Taton TA. DNA dissociation
    and degradation at gold nanoparticle surfaces. Colloids and
    Surfaces B: Biointerfaces. 2006;51(2):130-9.
    16. Zhang X, Servos MR, Liu J. Instantaneous and quantitative
    functionalization of gold nanoparticles with thiolated DNA using
    a pH-assisted and surfactant-free route. Journal of the American
    Chemical Society. 2012;134(17):7266-9.
    17. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin
    CA. Selective colorimetric detection of polynucleotides based on
    the distance-dependent optical properties of gold nanoparticles.
    Science. 1997;277(5329):1078-81.
    18. Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. What controls the
    melting properties of DNA-linked gold nanoparticle assemblies?
    Journal of the American Chemical Society. 2003;125(6):1643-54.
    19. Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle
    purple aggregates for colorimetric sensing of analytes. Nature
    protocols. 2006;1(1):246-52.
    20. Liu J, Lu Y. Smart nanomaterials responsive to multiple
    chemical stimuli with controllable cooperativity. Advanced
    Materials. 2006;18(13):1667-71.
    21. António M, Vitorino R, Daniel-da-Silva AL. Gold
    nanoparticles-based assays for biodetection in urine. Talanta.
    2021:122345.
    22. Jennings T, Singh M, Strouse G. Fluorescent lifetime quenching
    near d= 1.5 nm gold nanoparticles: probing NSET validity. Journal
    of the American Chemical Society. 2006;128(16):5462-7.
    23. Yun C, Javier A, Jennings T, Fisher M, Hira S, Peterson S, et
    al. Nanometal surface energy transfer in optical rulers, breaking
    the FRET barrier. Journal of the American Chemical Society.
    2005;127(9):3115-9.
    24. Ray PC, Darbha GK, Ray A, Walker J, Hardy W. Gold
    nanoparticle based FRET for DNA detection. Plasmonics.
    2007;2(4):173-83.
  2. 25. Ray PC, Fortner A, Darbha GK. Gold nanoparticle based
    FRET asssay for the detection of DNA cleavage. The Journal of
    Physical Chemistry B. 2006;110(42):20745-8.
    26. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han
    MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for
    intracellular gene regulation. Science. 2006;312(5776):1027-30.
    27. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL,
    Mirkin CA. Oligonucleotide loading determines cellular uptake of
    DNA-modified gold nanoparticles. Nano letters. 2007;7(12):3818-
    21.
    28. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich
    AE, Mirkin CA. Scavenger receptors mediate cellular uptake of
    polyvalent oligonucleotide-functionalized gold nanoparticles.
    Bioconjugate chemistry. 2010;21(12):2250-6.
    29. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA.
    Aptamer nano-flares for molecular detection in living cells. Nano
    letters. 2009;9(9):3258-61.
    30. Harry SR, Hicks DJ, Amiri KI, Wright DW. Hairpin DNA
    coated gold nanoparticles as intracellular mRNA probes for
    the detection of tyrosinase gene expression in melanoma cells.
    Chemical communications. 2010;46(30):5557-9.
    31. Taton TA, Lu G, Mirkin CA. Two-color labeling of
    oligonucleotide arrays via size-selective scattering of
    nanoparticle probes. Journal of the American Chemical Society.
    2001;123(21):5164-5.
    32. Hill HD, Mirkin CA. The bio-barcode assay for the detection
    of protein and nucleic acid targets using DTT-induced ligand
    exchange. Nature protocols. 2006;1(1):324-36.
    33. Nam J-M, Jang K-J, Groves JT. Detection of proteins using a
    colorimetric bio-barcode assay. Nature Protocols. 2007;2(6):1438-
    44.
    34. Storhoff JJ, Marla SS, Bao P, Hagenow S, Mehta H, Lucas A,
    et al. Gold nanoparticle-based detection of genomic DNA targets
    on microarrays using a novel optical detection system. Biosensors
    and Bioelectronics. 2004;19(8):875-83.
    35. Sato Y, Sato K, Hosokawa K, Maeda M. Surface plasmon
    resonance imaging on a microchip for detection of DNA-modified
    gold nanoparticles deposited onto the surface in a non-cross-
    linking configuration. Analytical biochemistry. 2006;355(1):125-
    31.
    36. Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J,
    et al. Sub-attomole oligonucleotide and p53 cDNA determinations
    via a high-resolution surface plasmon resonance combined with
    oligonucleotide-capped gold nanoparticle signal amplification.
    Analytical biochemistry. 2006;354(2):220-8.
    37. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han
    MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for
    intracellular gene regulation. Science. 2006;312(5776):1027-30.
    38. Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin
    CA. Nano-Flares: Probes for Transfection and mRNA Detection
    in Living Cells. Journal of the American Chemical Society.
    2007;129(50):15477-9.
    39. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR.
    Homogeneous detection of unamplified genomic DNA sequences
    based on colorimetric scatter of gold nanoparticle probes. Nature
    biotechnology. 2004;22(7):883-7.
    40. Beermann B, Carrillo-Nava E, Scheffer A, Buscher
    W, Jawalekar AM, Seela F, et al. Association temperature
    governs structure and apparent thermodynamics of DNA–gold
    nanoparticles. Biophysical chemistry. 2007;126(1-3):124-31.
    41. Li Y, Wark AW, Lee HJ, Corn RM. Single-nucleotide
    polymorphism genotyping by nanoparticle-enhanced surface
    plasmon resonance imaging measurements of surface ligation
    reactions. Analytical Chemistry. 2006;78(9):3158-64.
    42. Xu X, Han MS, Mirkin CA. A gold‐nanoparticle‐based real‐
    time colorimetric screening method for endonuclease activity
    and inhibition. Angewandte Chemie International Edition.
    2007;46(19):3468-70.
    43. Baptista P, Doria G, Henriques D, Pereira E, Franco R.
    Colorimetric detection of eukaryotic gene expression with
    DNA-derivatized gold nanoparticles. Journal of biotechnology.
    2005;119(2):111-7.