Document Type : Review Article


1 Department of health in baghdad Rusafa, Al-kindy teaching hospital, ministry of health, Baghdad, Iraq.

2 Medical Microbiology branch, College of medicine, Kufa University, Al-Najaf, Iraq.

3 Department of biology, Faculty of science, Arak university, Arak, Iran

4 ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR,Tehran, Iran.


The pathophysiology and molecular pathways of breast cancer (BC) are still unclear, but it appears that BC is caused by the interaction between genetic susceptibility and environmental factors. Epidemiology studies have shown the increase risk of BC through polycyclic aromatic hydrocarbons (PAH) exposure. Environmental carcinogens induce disease pathways by altering the expression of specific genes that may be a consequence of epigenetic modifications. In order to understand the effects of PAHs in the BC risk, the epigenetic pathway may consider as an important key and likely play a role in BC initiation. Novel epigenetic  biomarkers and treatments hold promise  in the approch of personalized medicine. Here, we focus to review the epigenetic factors in relation to polycyclic aromatic hydrocarbons exposure that may influence BC risk.


1.McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94.
2.Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nature Reviews Disease Primers. 2019;5(1):66.
3.Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocrine-related cancer. 2007;14(4):907-33.
4.Hilakivi-Clarke L, de Assis S, Warri A. Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk. Journal of mammary gland biology and neoplasia. 2013;18(1):25-42.
5.Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47.
6.Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Human molecular genetics. 2001;10(26):3001-7.
7.Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP. Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Research. 2009;11(1):R14.
8.Joo JE, Dowty JG, Milne RL, Wong EM, Dugué P-A, English D, et al. Heritable DNA methylation marks associated with susceptibility to breast cancer. Nature communications. 2018;9(1):1-12.
9.Potapova A, Hoffman AM, Godwin AK, Al-Saleem T, Cairns P. Promoter hypermethylation of the PALB2 susceptibility gene in inherited and sporadic breast and ovarian cancer. Cancer research. 2008;68(4):998-1002.
10.Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clinical cancer research. 2006;12(22):6626-36.
11.Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A, et al. Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer research. 2008;68(6):1786-96.
12.Li Y, Li S, Chen J, Shao T, Jiang C, Wang Y, et al. Comparative epigenetic analyses reveal distinct patterns of oncogenic pathways activation in breast cancer subtypes. Human molecular genetics. 2014;23(20):5378-93.
13.Mungamuri SK, Murk W, Grumolato L, Bernstein E, Aaronson SA. Chromatin modifications sequentially enhance ErbB2 expression in ErbB2-positive breast cancers. Cell reports. 2013;5(2):302-13.
14.Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, et al. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Molecular Cancer Research. 2013;11(9):1029-39.
15.Jin W, Li Q-Z, Liu Y, Zuo Y-C. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics. 2020;112(1):853-8.
16.Mishra SK, Mandal M, Mazumdar A, Kumar R. Dynamic chromatin remodeling on the HER2 promoter in human breast cancer cells. FEBS letters. 2001;507(1):88-94.
17.Tryndyak VP, Kovalchuk O, Pogribny IP. Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer biology & therapy. 2006;5(1):65-70.
18.Zhang Z, Chen L, Xing X, Li D, Gao C, He Z, et al. Specific histone modifications were associated with the PAH-induced DNA damage response in coke oven workers. Toxicology research. 2016;5(4):1193-201.
19.Yu Z, Zeng J, Liu H, Wang T, Yu Z, Chen J. Role of HDAC1 in the progression of gastric cancer and the correlation with lncRNAs. Oncology letters. 2019;17(3):3296-304.
20.Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071-6.
21.Ma X, Yu L, Wang P, Yang X. Discovering DNA methylation patterns for long non-coding RNAs associated with cancer subtypes. Computational biology and chemistry. 2017;69:164-70.
22.Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Science translational medicine. 2011;3(75):75ra25-75ra25.
23.Kapoor PM, Lindström S, Behrens S, Wang X, Michailidou K, Bolla MK, et al. Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. International journal of epidemiology. 2019.
24.Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environmental Health. 2017;16(1):94.
25.Johnson RH, Chien FL, Bleyer A. Incidence of breast cancer with distant involvement among women in the United States, 1976 to 2009. Jama. 2013;309(8):800-5.
26.Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environmental research. 2018;160:152-82.
27.Harbeck N, Penault-Llorca F, Cortes J. Breast cancer Nat. Rev Dis Primers. 2019;5(1):66.
28.arlsten C, Melén E. Air pollution, genetics, and allergy: an update. Current opinion in allergy and clinical immunology. 2012;12(5):455-61.
29.Liu T, Song Y, Chen R, Zheng R, Wang S, Li L. Solid fuels use for heating and risks of breast and cervical cancer mortality in China. Environmental Research. 2020:109578.
30.El-Bayoumy K, Chae Y-H, Upadhyaya P, Rivenson A, Kurtzke C, Reddy B, et al. Comparative tumorigenicity of benzo [a] pyrene, 1-nitropyrene and 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine administered by gavage to female CD rats. Carcinogenesis. 1995;16(2):431-4.
31.Pavanello S, Pesatori A-C, Dioni L, Hoxha M, Bollati V, Siwinska E, et al. Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis. 2010;31(2):216-21.
32.Fleisch AF, Wright RO, Baccarelli AA. Environmental epigenetics: a role in endocrine disease? Journal of molecular endocrinology. 2012;49(2):R61-R7.
33.Liu T, Song Y, Chen R, Zheng R, Wang S, Li L. Solid fuels use for heating and risks of breast and cervical cancer mortality in China. Environmental Research. 2020:109578.
34.Gammon MD, Santella RM, Neugut AI, Eng SM, Teitelbaum SL, Paykin A, et al. Environmental toxins and breast cancer on Long Island. I. Polycyclic aromatic hydrocarbon DNA adducts. Cancer Epidemiology and Prevention Biomarkers. 2002;11(8):677-85.
35.Mordukhovich I, Beyea J, Herring AH, Hatch M, Stellman SD, Teitelbaum SL, et al. Polymorphisms in DNA repair genes, traffic‐related polycyclic aromatic hydrocarbon exposure and breast cancer incidence. International journal of cancer. 2016;139(2):310-21.
36.Crew KD, Gammon MD, Terry MB, Zhang FF, Zablotska LB, Agrawal M, et al. Polymorphisms in nucleotide excision repair genes, polycyclic aromatic hydrocarbon-DNA adducts, and breast cancer risk. Cancer Epidemiology and Prevention Biomarkers. 2007;16(10):2033-41.
37.Terry MB, Gammon MD, Zhang FF, Eng SM, Sagiv SK, Paykin AB, et al. Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk. Cancer Epidemiology and Prevention Biomarkers. 2004;13(12):2053-8.
38.Rundle A, Tang D, Hibshoosh H, Estabrook A, Schnabel F, Cao W, et al. The relationship between genetic damage from polycyclic aromatic hydrocarbons in breast tissue and breast cancer. Carcinogenesis. 2000;21(7):1281-9.
39.Rundle A, Tang D, Hibshoosh H, Schnabel F, Kelly A, Levine R, et al. Molecular epidemiologic studies of polycyclic aromatic hydrocarbon–DNA adducts and breast cancer. Environmental and molecular mutagenesis. 2002;39(2‐3):201-7.
40.Sahay D, Terry MB, Miller R. Is breast cancer a result of epigenetic responses to traffic-related air pollution? A review of the latest evidence. Epigenomics. 2019;11(6).
41.Gaudet MM, Gapstur SM, Sun J, Diver WR, Hannan LM, Thun MJ. Active smoking and breast cancer risk: original cohort data and meta-analysis. Journal of the National Cancer Institute. 2013;105(8):515-25.
42.Jeffy BD, Chirnomas RB, Romagnolo DF. Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environmental and molecular mutagenesis. 2002;39(2‐3):235-44.
43.Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature reviews genetics. 2007;8(4):286.
44.Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683-92.
45.Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annual review of public health. 2018;39:309-33.
46.Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. The Journal of nutrition. 2010;140(9):1607-14.
47.Zhang X, Lin S, Funk WE, Hou L. Republished: Environmental and occupational exposure to chemicals and telomere length in human studies. Postgraduate medical journal. 2013;89(1058):722-8.
48.Sadikovic B, Andrews J, Carter D, Robinson J, Rodenhiser DI. Genome-wide H3K9 histone acetylation profiles are altered in benzopyrene-treated MCF7 breast cancer cells. Journal of biological chemistry. 2008;283(7):4051-60.
49.Gao C, He Z, Li J, Li X, Bai Q, Zhang Z, et al. Specific long non-coding RNAs response to occupational PAHs exposure in coke oven workers. Toxicology reports. 2016;3:160-6.
50.White AJ, Chen J, McCullough LE, Xu X, Cho YH, Teitelbaum SL, et al. Polycyclic aromatic hydrocarbon (PAH)–DNA adducts and breast cancer: modification by gene promoter methylation in a population-based study. Cancer Causes & Control. 2015;26(12):1791-802.
51.White AJ, Chen J, Teitelbaum SL, McCullough LE, Xu X, Cho YH, et al. Sources of polycyclic aromatic hydrocarbons are associated with gene-specific promoter methylation in women with breast cancer. Environmental research. 2016;145:93-100.
52.Wu, Hsing-Ju, and Pei-Yi Chu. “Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications.” International journal of molecular sciences, 2021; vol. 22,15.
53.Bock C. Epigenetic biomarker development. Epigenomics. 2009;1(1):99-110.
54.Rider CF, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans. Clinical epigenetics. 2019;11(1):131.
55.Li D, Wang M, Dhingra K, Hittelman WN. Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology. Cancer research. 1996;56(2):287-93.
56.Malla S, Kadimisetty K, Fu Y-J, Choudhary D, Schenkman JB, Rusling JF. Methyl-cytosine-driven structural changes enhance adduction kinetics of an exon 7 fragment of the p53 gene. Scientific reports. 2017;7(1):1-7.
57.Jabbari K, Bernardi G. Cytosine methylation and cpg, tpg (cpa) and tpa frequencies. Gene. 2004;333:143-9.
58.Klingbeil E, Hew K, Nygaard UC, Nadeau K. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma. Immunologic research. 2014;58(2-3):369-73.
59.Brown SE, Suderman MJ, Hallett M, Szyf M. DNA demethylation induced by the methyl-CpG-binding domain protein MBD3. Gene. 2008;420(2):99-106.
60.Ho S-M. Environmental epigenetics of asthma: an update. Journal of Allergy and Clinical Immunology. 2010;126(3):453-65.
61.Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315-26.
62.Fish TJ, Benninghoff AD. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons. Food and Chemical Toxicology. 2017;109:703-13.
63.Luo S, Chen J, Mo X. The association of PTEN hypermethylation and breast cancer: a meta-analysis. OncoTargets and therapy. 2016;9:5643.
64.Boutros R, Byrne JA. D53 (TPD52L1) is a cell cycle-regulated protein maximally expressed at the G2-M transition in breast cancer cells. Experimental cell research. 2005;310(1):152-65.
65.Xu X, Gammon MD, Zhang Y, Bestor TH, Zeisel SH, Wetmur JG, et al. BRCA1 promoter methylation is associated with increased mortality among women with breast cancer. Breast cancer research and treatment. 2009;115(2):397.
66.Breton CV, Byun H-M, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. American journal of respiratory and critical care medicine. 2009;180(5):462-7.
67.Toledo‐Rodriguez M, Lotfipour S, Leonard G, Perron M, Richer L, Veillette S, et al. Maternal smoking during pregnancy is associated with epigenetic modifications of the brain‐derived neurotrophic factor‐6 exon in adolescent offspring. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2010;153(7):1350-4.
68.Alegría-Torres JA, Barretta F, Batres-Esquivel LE, Carrizales-Yáñez L, Pérez-Maldonado IN, Baccarelli A, et al. Epigenetic markers of exposure to polycyclic aromatic hydrocarbons in Mexican brickmakers: a pilot study. Chemosphere. 2013;91(4):475-80.
69.Zaytseva YY, Wallis NK, Southard RC, Kilgore MW. The PPARγ antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARγ-dependent and-independent mechanisms. Anticancer research. 2011;31(3):813-23.
70.Kohli A, Garcia MA, Miller RL, Maher C, Humblet O, Hammond SK, et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increasedx CpG methylation and decreased expression of IFN-γ in T effector cells and Foxp3 in T regulatory cells in children. Clinical epigenetics. 2012;4(1):17.
71.Martinez LM, Robila V, Clark NM, Du W, Idowu MO, Rutkowski MR, et al. Regulatory T Cells Control the Switch From in situ to Invasive Breast Cancer. Frontiers in immunology. 2019;10:1942.
72.Martin F, Ladoire S, Mignot G, Apetoh L, Ghiringhelli F. Human FOXP3 and cancer. Oncogene. 2010;29(29):4121-9.
73.Ramos KS, He Q, Kalbfleisch T, Montoya-Durango DE, Teneng I, Stribinskis V, et al. Computational and biological inference of gene regulatory networks of the LINE-1 retrotransposon. Genomics. 2007;90(2):176-85.
74.Bojang Jr P, Roberts RA, Anderton MJ, Ramos KS. Reprogramming of the HepG2 genome by long interspersed nuclear element-1. Molecular oncology. 2013;7(4):812-25.
75.Lavasanifar A, Sharp CN, Korte EA, Yin T, Hosseinnijad K, Jortani SA. Long interspersed nuclear element-1 mobilization as a target in cancer diagnostics, prognostics and therapeutics. Clinica Chimica Acta. 2019.
76.Wu Y, Niu Y, Leng J, Xu J, Chen H, Li H, et al. Benzo (a) pyrene regulated A549 cell migration, invasion and epithelial-mesenchymal transition by up-regulating long non-coding RNA linc00673. Toxicology letters. 2020;320:37-45.
77.Sadikovic B, Rodenhiser DI. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicology and applied pharmacology. 2006;216(3):458-68.
78.Pavanello S, Bollati V, Pesatori AC, Kapka L, Bolognesi C, Bertazzi PA, et al. Global and gene‐specific promoter methylation changes are related to anti‐B [a] PDE‐DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon‐exposed individuals. International journal of cancer. 2009;125(7):1692-7.
79.Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS. Reactivation of L1 retrotransposon by benzo (a) pyrene involves complex genetic and epigenetic regulation. Epigenetics. 2011;6(3):355-67.
80.Boissinot S, Davis J, Entezam A, Petrov D, Furano AV. Fitness cost of LINE-1 (L1) activity in humans. Proceedings of the National Academy of Sciences. 2006;103(25):9590-4.
81.Knothe C, Shiratori H, Resch E, Ultsch A, Geisslinger G, Doehring A, et al. Disagreement between two common biomarkers of global DNA methylation. Clinical epigenetics. 2016;8(1):60.
82.Reyes-Reyes EM, Ramos IN, Tavera-Garcia MA, Ramos KS. The aryl hydrocarbon receptor agonist benzo (a) pyrene reactivates LINE-1 in HepG2 cells through canonical TGF-β1 signaling: implications in hepatocellular carcinogenesis. American journal of cancer research. 2016;6(5):1066.
83.Gaarenstroom T, Hill CS, editors. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Seminars in cell & developmental biology; 2014: Elsevier.
84.Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene. 2005;24(48):7213-23.
85.Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug discovery today. 2019.
86.Pasculli B, Barbano R, Parrella P, editors. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Seminars in cancer biology; 2018: Elsevier.
87.Liang W, Xu J, Yuan W, Song X, Zhang J, Wei W, et al. APOBEC3DE inhibits LINE-1 retrotransposition by interacting with ORF1p and influencing LINE reverse transcriptase activity. PLoS One. 2016;11(7).
88.Mese G, Yalcin-Ozuysal O. Epigenetics of Breast Cancer: DNA Methylome and Global Histone Modifications.  Epigenetic Advancements in Cancer: Springer; 2016. p. 207-28.
89.Luo X-G, Guo S, Guo Y, Zhang C-L. Histone modification and breast cancer. Breast cancer–focusing tumor microenvironment, stem cells and metastasis Eds M Gunduz, E Gunduz. 2011:321-42.
90.Magnani L, Louloupi A, Zwart W. Histone Posttranslational Modifications in Breast Cancer and Their Use in Clinical Diagnosis and Prognosis.  Epigenetic Biomarkers and Diagnostics: Elsevier; 2016. p. 467-77.
91.Rahman MM, Brane AC, Tollefsbol TO. MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer. Cells. 2019;8(10):1214.
92.Humphries B, Wang Z, Yang C. MicroRNA regulation of epigenetic modifiers in breast Cancer. Cancers. 2019;11(7):897.
93.Tubio JM, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345(6196):1251343.
94.Molina-Serrano D, Kyriakou D, Kirmizis A. Histone modifications as an intersection between diet and longevity. Frontiers in genetics. 2019;10.
95.Liang J, Zhu H, Li C, Ding Y, Zhou Z, Wu Q. Neonatal exposure to benzo [a] pyrene decreases the levels of serum testosterone and histone H3K14 acetylation of the StAR promoter in the testes of SD rats. Toxicology. 2012;302(2-3):285-91.
96.Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, et al. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PloS one. 2010;5(10).
97.Pace E, Di Vincenzo S, Ferraro M, Siena L, Chiappara G, Dino P, et al. Effects of carbocysteine and beclomethasone on histone acetylation/deacetylation processes in cigarette smoke exposed bronchial epithelial cells. Journal of cellular physiology. 2017;232(10):2851-9.
98.Hirota M, Watanabe K, Hamada S, Sun Y, Strizzi L, Mancino M, et al. Smad2 functions as a co-activator of canonical Wnt/β-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cellular signalling. 2008;20(9):1632-41.
99.Mosashvilli D, Kahl P, Mertens C, Holzapfel S, Rogenhofer S, Hauser S, et al. Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer science. 2010;101(12):2664-9.
100.Liu C, Xing X, Chen L, Li D, Bai Q, Wang Q, et al. Specific histone modifications regulate the expression of AhR in 16HBE cells exposed to benzo (a) pyrene. Toxicology Research. 2015;4(1):143-51
101.Derfoul A, Juan AH, Difilippantonio MJ, Palanisamy N, Ried T, Sartorelli V. Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis. 2011;32(11):1607-14.
102.Ding Q, Wang Y, Zuo Z, Gong Y, Krishnamurthy S, Li C-W, et al. Decreased expression of microRNA-26b in locally advanced and inflammatory breast cancer. Human pathology. 2018;77:121-9.
103.Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy. Investigative ophthalmology & visual science. 2017;58(1):470-80.
104.Zhang B, Liu X-X, He J-R, Zhou C-X, Guo M, He M, et al. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 2011;32(1):2-9.
105.Liu F, Sang M, Meng L, Gu L, Liu S, Li J, et al. miR‑92b promotes autophagy and suppresses viability and invasion in breast cancer by targeting EZH2. International journal of oncology. 2018;53(4):1505-15.
106.Varambally S, Cao Q, Mani R-S, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. science. 2008;322(5908):1695-9.
107.Bockhorn J, Prat A, Chang Y-F, Liu X, Huang S, Shang M, et al. Differentiation and loss of malignant character of spontaneous pulmonary metastases in patient-derived breast cancer models. Cancer research. 2014;74(24):7406-17.
108.Moorthy B, Jiang W, Wang L, Maturu P, Zhou G. Suppression of Polycyclic Aromatic Hydrocarbon (PAH)-Mediated Pulmonary Carcinogenesis in Mice by Omega-3-Fatty acids. The FASEB Journal. 2018;32(1_supplement):694.5-.5.
109.Duan X, Zhang D, Wang S, Feng X, Wang T, Wang P, et al. Effects of polycyclic aromatic hydrocarbon exposure and miRNA variations on peripheral blood leukocyte DNA telomere length: A cross-sectional study in Henan Province, China. Science of The Total Environment. 2020;703:135600.
110.Khanal T, Kim D, Johnson A, Choubey D, Kim K. Deregulation of NR2E3, an orphan nuclear receptor, by benzo (a) pyrene-induced oxidative stress is associated with histone modification status change of the estrogen receptor gene promoter. Toxicology letters. 2015;237(3):228-36.
111.Park YY, Kim K, Kim SB, Hennessy BT, Kim SM, Park ES, et al. Reconstruction of nuclear receptor network reveals that NR2E3 is a novel upstream regulator of ESR1 in breast cancer. EMBO molecular medicine. 2012;4(1):52-67.
112.Toyooka T, Ohnuki G, Ibuki Y. Solar-simulated light-exposed benzo [a] pyrene induces phosphorylation of histone H2AX. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2008;650(2):132-9.
113.Jamin EL, Riu A, Douki T, Debrauwer L, Cravedi J-P, Zalko D, et al. Combined genotoxic effects of a polycyclic aromatic hydrocarbon (B (a) P) and an heterocyclic amine (PhIP) in relation to colorectal carcinogenesis. PLoS One. 2013;8(3).
114.Serdar B, Brindley S, Dooley G, Volckens J, Juarez-Colunga E, Gan R. Short-term markers of DNA damage among roofers who work with hot asphalt. Environmental Health. 2016;15(1):99.
115.Jirka I, Kopová I, Kubát P, Tabor E, Bačáková L, Bouša M, et al. The photodynamic properties and the genotoxicity of heat-treated silicalite-1 films. Materials. 2019;12(4):567.
116.Rossner Jr P, Rossnerova A, Beskid O, Tabashidze N, Libalova H, Uhlirova K, et al. Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2014;763:28-38.
117.Ohnuki G, Toyooka T, Ibuki Y. UVB in solar-simulated light causes formation of BaP-photoproducts capable of generating phosphorylated histone H2AX. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2010;702(1):70-7.
118.Kabátková M, Zapletal O, Tylichová Z, Neča J, Machala M, Milcová A, et al. Inhibition of β-catenin signalling promotes DNA damage elicited by benzo [a] pyrene in a model of human colon cancer cells via CYP1 deregulation. Mutagenesis. 2015;30(4):565-76.
119.Tjeertes JV, Miller KM, Jackson SP. Screen for DNA‐damage‐responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. The EMBO journal. 2009;28(13):1878-89.
120.Adenuga D, Yao H, March TH, Seagrave J, Rahman I. Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. American journal of respiratory cell and molecular biology. 2009;40(4):464-73.
121.Deng Q, Huang S, Zhang X, Zhang W, Feng J, Wang T, et al. Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons. Environmental health perspectives. 2014;122(7):719-25.
122.Wang F, Zhu X, Zhang Z, Chen L, Fan J, Li Q, et al. The relationship between histone H3Ser10 phosphorylation and DNA damage in periphery blood lymphocytes of polycyclic aromatic hydrocarbons exposed workers. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]. 2017;51(5):421-6.
123.Verma M. Cancer control and prevention by nutrition and epigenetic approaches. Antioxidants & redox signaling. 2012;17(2):355-64.
124.Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015;7(2):922-47.
125.Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, et al. Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Scientific reports. 2017;7(1):1-9.
126.Arshi A, Raeisi F, Mahmoudi E, Mohajerani F, Kabiri H, Fazel R, et al. A Comparative Study of HOTAIR Expression in Breast Cancer Patient Tissues and Cell Lines. Cell Journal (Yakhteh). 2020;22(2).
127.Zhang A, Xu M, Mo Y-Y. Role of the lncRNA–p53 regulatory network in cancer. Journal of molecular cell biology. 2014;6(3):181-91.
128.Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2014;1839(11):1097-109.
129.Wu Y, Zhang L, Wang Y, Li H, Ren X, Wei F, et al. Long noncoding RNA HOTAIR involvement in cancer. Tumor Biology. 2014;35(10):9531-8.
130.Bai W, Yang J, Yang G, Niu P, Tian L, Gao A. Long non-coding RNA NR_045623 and NR_028291 involved in benzene hematotoxicity in occupationally benzene-exposed workers. Experimental and molecular pathology. 2014;96(3):354-60.
131.Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cellular and molecular life sciences. 2013;70(24):4785-94.
132.Biswas S, Thomas AA, Chen S, Aref-Eshghi E, Feng B, Gonder J, et al. MALAT1: an epigenetic regulator of inflammation in diabetic retinopathy. Scientific reports. 2018;8(1):1-15.
133.Chen D, Xu T, Chang HH, Song Q, Zhu Y, Han Y, et al. The Role of MALAT1 in Cancer. Journal of Cancer Science and Clinical Therapeutics. 2019;3:5-27.
134.Xu Y, Wang J, Qiu M, Xu L, Li M, Jiang F, et al. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumor Biology. 2015;36(3):1643-51.
135.Xu Z-Y, Yu Q-M, Du Y-A, Yang L-T, Dong R-Z, Huang L, et al. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. International journal of biological sciences. 2013;9(6):587.
136.Li Z, Dou P, Liu T, He S. Application of long noncoding RNAs in osteosarcoma: biomarkers and therapeutic targets. Cellular Physiology and Biochemistry. 2017;42(4):1407-19.
137.Liu Y, Wang B, Liu X, Lu L, Luo F, Lu X, et al. Epigenetic silencing of p21 by long non-coding RNA HOTAIR is involved in the cell cycle disorder induced by cigarette smoke extract. Toxicology letters. 2016;240(1):60-7.
138.Liu Y, Luo F, Xu Y, Wang B, Zhao Y, Xu W, et al. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicology and applied pharmacology. 2015;282(1):9-19.
139.Gradia DF, Mathias C, Coutinho R, Cavalli IJ, Ribeiro EM, De Oliveira JC. Long non-coding RNA TUG1 expression is associated with different subtypes in human breast cancer. Non-coding RNA. 2017;3(4):26.
140.Li T, Liu Y, Xiao H, Xu G. Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer. Breast Cancer. 2017;24(4):535-43.
141.Fan S, Yang Z, Ke Z, Huang K, Liu N, Fang X, et al. Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomedicine & Pharmacotherapy. 2017;95:1636-43.
142.Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H, et al. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell. 2008;132(2):221-32.
143.Lin Y, Fu F, Chen Y, Qiu W, Lin S, Yang P, et al. Genetic variants in long noncoding RNA H19 contribute to the risk of breast cancer in a southeast China Han population. OncoTargets and therapy. 2017;10:4369.
144.Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nature communications. 2015;6(1):1-13.
145.Kunej T, Godnic I, Horvat S, Zorc M, Calin GA. Cross talk between microRNA and coding cancer genes. Cancer journal (Sudbury, Mass). 2012;18(3):223.
146.Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang X, Ergun A, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proceedings of the National Academy of Sciences. 2009;106(7):2319-24.
147.Deng Q, Dai X, Feng W, Huang S, Yuan Y, Xiao Y, et al. Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environment international. 2019;122:369-80.
148.Filippov S, Yarushkin A, Kalinina T, Ovchinnikov V, Knyazev R, Gulyaeva L. Effect of Benzo (a) pyrene on the Expression of miR-483-3p in Hepatocyte Primary Culture and Rat Liver. Biochemistry (Moscow). 2019;84(10):1197-203.
149.Huang X, Lyu J. Tumor suppressor function of miR‑483‑3p on breast cancer via targeting of the cyclin E1 gene. Experimental and therapeutic medicine. 2018;16(3):2615-20.
150.Zhang M, Liu D, Li W, Wu X, Gao Ce, Li X. Identification of featured biomarkers in breast cancer with microRNA microarray. Archives of gynecology and obstetrics. 2016;294(5):1047-53.
151.Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, et al. MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. International journal of oncology. 2013;43(4):1212-8.
152.Halappanavar S, Wu D, Williams A, Kuo B, Godschalk RW, Van Schooten FJ, et al. Pulmonary gene and microRNA expression changes in mice exposed to benzo (a) pyrene by oral gavage. Toxicology. 2011;285(3):133-41.
153.Xia C, Yang Y, Kong F, Kong Q, Shan C. MiR-143-3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7. Biochimie. 2018;147:98-104.
154.Gordon MW, Yan F, Zhong X, Mazumder PB, Xu‐Monette ZY, Zou D, et al. Regulation of p53‐targeting microRNAs by polycyclic aromatic hydrocarbons: Implications in the etiology of multiple myeloma. Molecular carcinogenesis. 2015;54(10):1060-9.
155.Karsli‐Ceppioglu S. Epigenetic mechanisms in psychiatric diseases and epigenetic therapy. Drug development research. 2016;77(7):407-13.
156.Mansoori B, Mohammadi A, Gjerstorff MF, Shirjang S, Asadzadeh Z, Khaze V, et al. miR‐142‐3p is a tumor suppressor that inhibits estrogen receptor expression in ER‐positive breast cancer. Journal of cellular physiology. 2019;234(9):16043-53.
157.Kim Y, Son D, Yoo KH, Park JH. miRNAs involved in LY6K and estrogen receptor-α contribute to tamoxifen susceptibility in breast cancer. AACR; 2017.
158.Chen Y, Wu N, Liu L, Dong H, Wu C. Correlation between microRNA-21, microRNA-206 and estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 in breast cancer. Clinical biochemistry. 2019;71:52-7.
159.Xu Y, Chao L, Wang J, Sun Y. miRNA‑148a regulates the expression of the estrogen receptor through DNMT1‑mediated DNA methylation in breast cancer cells. Oncology letters. 2017;14(4):4736-40.
160.León SPZ, López FD. Polycyclic Aromatic Hydrocarbons and their Association with Breast Cancer. Bangladesh Journal of Medical Science. 2020;19(2):194-9.
161.Saha T, Makar S, Swetha R, Gutti G, Singh SK. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. European journal of medicinal chemistry. 2019.
162.Begam AJ, Jubie S, Nanjan M. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorganic chemistry. 2017;71:257-74.
163.Li Y, Meeran SM, Patel SN, Chen H, Hardy TM, Tollefsbol TO. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Molecular cancer. 2013;12(1):9.
164.Yilmaz B, Ssempebwa J, Mackerer CR, Arcaro KF, Carpenter DO. Effects of polycyclic aromatic hydrocarbon-containing oil mixtures on generation of reactive oxygen species and cell viability in MCF-7 breast cancer cells. Journal of Toxicology and Environmental Health, Part A. 2007;70(13):1108-15.
165.Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal transduction and targeted therapy. 2016;1(1):1-9.