Document Type : Review Article

Authors

1 Department of Biology, Faculty of Basic Sciences, East Tehran Branch, Islamic Azad university, Tehran, Iran

2 Reference Health Laboratory, Ministry of Health and Medical Education

10.22034/pmj.2024.2024374.1034

Abstract

Recent research has pinpointed cancer as the primary cause of death on a global scale. Various traditional medications and cytotoxic immunotherapies have been established and are now accessible on the market. Given the intricate nature of tumor activity and the multitude of genetic and cellular elements implicated in the development and spread of cancers, it is imperative to create a highly effective immunotherapy that can specifically target tumors at both the cellular and genetic levels. In the clinical context, cancer immunotherapy is growing more and more significant, particularly for tumors that are resistant to traditional chemotherapy and targeted treatments. Chimeric antigen receptor (CAR) T cell therapy is a new method of modifying T cells taken from a patient's blood in a laboratory setting. These modified T cells are created to express artificial receptors that specifically target a particular tumor antigen. These specifically recognize the tumor antigen without the participation of the major histocompatibility complex. The use of CAR therapy has the promise of providing a prompt and more secure treatment regimen for both non-solid and solid malignancies. This study provides a comprehensive analysis of the benefits and progress made in CAR immunotherapy.

Keywords

Main Subjects

  1. Safarzadeh Kozani, P., Safarzadeh Kozani, P., Ahmadi Najafabadi, M., Yousefi, F., Mirarefin, S. M. J., & Rahbarizadeh, F. (2022). Recent advances in solid tumor CAR-T cell therapy: driving tumor cells from hero to zero?. Frontiers in Immunology13, 795164.
  2. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature reviews cancer12(4), 252-264.
  3. Jenkins, R. W., Barbie, D. A., & Flaherty, K. T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. British journal of cancer118(1), 9-16.
  4. Rohaan, M. W., Wilgenhof, S., & Haanen, J. B. (2019). Adoptive cellular therapies: the current landscape. Virchows Archiv474, 449-461.
  5. Rosenberg, S. A., Spiess, P., & Lafreniere, R. (1986). A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science233(4770), 1318-1321.
  6. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J., & Kastenmüller, W. (2018). CD4+ T cell help in cancer immunology and immunotherapy. Nature Reviews Immunology18(10), 635-647.
  7. Whiteside, T. L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene27(45), 5904-5912.
  8. Baxevanis, C. N., Voutsas, I. F., Tsitsilonis, O. E., Gritzapis, A. D., Sotiriadou, R., & Papamichail, M. (2000). Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor. The Journal of Immunology164(7), 3902-3912.
  9. Umeshappa, C. S., Nanjundappa, R. H., Xie, Y., Freywald, A., Xu, Q., & Xiang, J. (2013). Differential requirements of CD 4+ T‐cell signals for effector cytotoxic T‐lymphocyte (CTL) priming and functional memory CTL development at higher CD 8+ T‐cell precursor frequency. Immunology138(4), 298-306.
  10. Eberlein, T. J., Rosenstein, M., & Rosenberg, S. A. (1982). Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. The Journal of experimental medicine156(2), 385-397.
  11. Rosenberg, S. A., Packard, B. S., Aebersold, P. M., Solomon, D., Topalian, S. L., Toy, S. T., ... & White, D. E. (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. New England Journal of Medicine319(25), 1676-1680.
  12. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. (2018). CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361-1365.
  13. Park, J. H., Rivière, I., Gonen, M., Wang, X., Sénéchal, B., Curran, K. J., ... & Sadelain, M. (2018). Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. New England Journal of Medicine378(5), 449-459.
  14. Mohanty, R., Chowdhury, C. R., Arega, S., Sen, P., Ganguly, P., & Ganguly, N. (2019). CAR T cell therapy: A new era for cancer treatment. Oncology reports42(6), 2183-2195.
  15. Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: current limitations and potential strategies. Blood cancer journal11(4), 69.
  16. Chailyan, A., Marcatili, P., & Tramontano, A. (2011). The association of heavy and light chain variable domains in antibodies: implications for antigen specificity. The FEBS journal278(16), 2858-2866.
  17. Liu, X., Jiang, S., Fang, C., Yang, S., Olalere, D., Pequignot, E. C., ... & Zhao, Y. (2015). Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer research75(17), 3596-3607.
  18. Huang, R., Li, X., He, Y., Zhu, W., Gao, L., Liu, Y., ... & Zhang, X. (2020). Recent advances in CAR-T cell engineering. Journal of Hematology & Oncology13(1), 1-19.
  19. Hirobe, S., Imaeda, K., Tachibana, M., & Okada, N. (2022). The effects of chimeric antigen receptor (CAR) hinge domain post-translational modifications on CAR-T cell activity. International Journal of Molecular Sciences23(7), 4056.
  20. Xu, H., Hamburger, A. E., Mock, J. Y., Wang, X., Martin, A. D., Tokatlian, T., ... & Kamb, A. (2020). Structure-function relationships of chimeric antigen receptors in acute T cell responses to antigen. Molecular Immunology126, 56-64.
  21. Bridgeman, J. S., Hawkins, R. E., Bagley, S., Blaylock, M., Holland, M., & Gilham, D. E. (2010). The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. The Journal of Immunology184(12), 6938-6949.
  22. Guedan, S., Posey Jr, A. D., Shaw, C., Wing, A., Da, T., Patel, P. R., ... & June, C. H. (2018). Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI insight3(1).
  23. Wu, L., Wei, Q., Brzostek, J., & Gascoigne, N. R. (2020). Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cellular & Molecular Immunology17(6), 600-612.
  24. Wu, W., Zhou, Q., Masubuchi, T., Shi, X., Li, H., Xu, X., ... & Xu, C. (2020). Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell182(4), 855-871.
  25. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I., & Sadelain, M. (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature biotechnology20(1), 70-75.
  26. Kawalekar, O. U., O’Connor, R. S., Fraietta, J. A., Guo, L., McGettigan, S. E., Posey, A. D., ... & June, C. H. (2016). Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity44(2), 380-390.
  27. Daei Sorkhabi, A., Mohamed Khosroshahi, L., Sarkesh, A., Mardi, A., Aghebati-Maleki, A., Aghebati-Maleki, L., & Baradaran, B. (2023). The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Frontiers in immunology14, 1113882.
  28. Tang, C. K., Gong, X. Q., Moscatello, D. K., Wong, A. J., & Lippman, M. E. (2000). Epidermal growth factor receptor vIII enhances tumorigenicity in human breast cancer. Cancer research60(11), 3081-3087.
  29. Johnson, L. A., Scholler, J., Ohkuri, T., Kosaka, A., Patel, P. R., McGettigan, S. E., ... & Maus, M. V. (2015). Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma. Science translational medicine7(275), 275ra22-275ra22.
  30. O’Rourke, D. M., Nasrallah, M. P., Desai, A., Melenhorst, J. J., Mansfield, K., Morrissette, J. J., ... & Maus, M. V. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science translational medicine9(399), eaaa0984.
  31. Goff, S. L., Morgan, R. A., Yang, J. C., Sherry, R. M., Robbins, P. F., Restifo, N. P., ... & Rosenberg, S. A. (2019). Pilot trial of adoptive transfer of chimeric antigen receptor transduced T cells targeting EGFRvIII in patients with glioblastoma. Journal of immunotherapy (Hagerstown, Md.: 1997)42(4), 126.
  32. Brown, C. E., Alizadeh, D., Starr, R., Weng, L., Wagner, J. R., Naranjo, A., ... & Badie, B. (2016). Regression of glioblastoma after chimeric antigen receptor T-cell therapy. New England Journal of Medicine375(26), 2561-2569.
  33. Krenciute, G., Krebs, S., Torres, D., Wu, M. F., Liu, H., Dotti, G., ... & Gottschalk, S. (2016). Characterization and functional analysis of scFv-based chimeric antigen receptors to redirect T cells to IL13Rα2-positive glioma. Molecular Therapy24(2), 354-363.
  34. Keu, K. V., Witney, T. H., Yaghoubi, S., Rosenberg, J., Kurien, A., Magnusson, R., ... & Gambhir, S. S. (2017). Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Science translational medicine9(373), eaag2196.
  35. Brown, C. E., Badie, B., Barish, M. E., Weng, L., Ostberg, J. R., Chang, W. C., ... & Jensen, M. C. (2015). Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clinical cancer research21(18), 4062-4072.
  36. Vranić, S., Bešlija, S., & Gatalica, Z. (2021). Targeting HER2 expression in cancer: New drugs and new indications. Bosnian journal of basic medical sciences21(1), 1.
  37. Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular therapy18(4), 843-851.
  38. Daei Sorkhabi, A., Sarkesh, A., Saeedi, H., Marofi, F., Ghaebi, M., Silvestris, N., ... & Brunetti, O. (2022). The basis and advances in clinical application of cytomegalovirus-specific cytotoxic T cell immunotherapy for glioblastoma multiforme. Frontiers in Oncology12, 818447.
  39. Vitanza, N. A., Johnson, A. J., Wilson, A. L., Brown, C., Yokoyama, J. K., Künkele, A., ... & Park, J. R. (2021). Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nature medicine27(9), 1544-1552.
  40. Chung, H., Jung, H., & Noh, J. Y. (2021). Emerging approaches for solid tumor treatment using CAR-T cell therapy. International journal of molecular sciences22(22), 12126.
  41. Ghajari, G., Heydari, A., & Ghorbani, M. (2023). Mesenchymal stem cell-based therapy and female infertility: limitations and advances. Current Stem Cell Research & Therapy18(3), 322-338.
  42. Piri-Gharaghie, T., Ghajari, G., Hassanpoor, M., Jegargoshe-Shirin, N., Soosanirad, M., Khayati, S., ... & Mirzaei, A. (2023). Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon9(3).
  43. Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular therapy18(4), 843-851.
  44. Ramos, C. A., Rouce, R., Robertson, C. S., Reyna, A., Narala, N., Vyas, G., ... & Dotti, G. (2018). In vivo fate and activity of second-versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas. Molecular Therapy26(12), 2727-2737.
  45. Sun, S., Hao, H., Yang, G., Zhang, Y., & Fu, Y. (2018). Immunotherapy with CAR-modified T cells: toxicities and overcoming strategies. Journal of immunology research2018.
  46. Norelli, M., Camisa, B., Barbiera, G., Falcone, L., Purevdorj, A., Genua, M., ... & Bondanza, A. (2018). Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nature medicine24(6), 739-748.
  47. Sterner, R. M., Sakemura, R., Cox, M. J., Yang, N., Khadka, R. H., Forsman, C. L., ... & Kenderian, S. S. (2019). GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood, The Journal of the American Society of Hematology133(7), 697-709.
  48. Huang, M., Deng, J., Gao, L., & Zhou, J. (2020). Innovative strategies to advance CAR T cell therapy for solid tumors. American journal of cancer research10(7), 1979–1992.
  49. Grenier, J. M., Yeung, S. T., Qiu, Z., Jellison, E. R., & Khanna, K. M. (2018). Combining adoptive cell therapy with cytomegalovirus-based vaccine is protective against solid skin tumors. Frontiers in Immunology8, 1993.
  50. Lapteva, N., Gilbert, M., Diaconu, I., Rollins, L. A., Al-Sabbagh, M., Naik, S., ... & Rooney, C. M. (2019). T-cell receptor stimulation enhances the expansion and function of CD19 chimeric antigen receptor–expressing T cells. Clinical Cancer Research25(24), 7340-7350.
  51. Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., ... & Linette, G. P. (2015). A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science348(6236), 803-808.
  52. Poschke, I., Lövgren, T., Adamson, L., Nyström, M., Andersson, E., Hansson, J., ... & Kiessling, R. (2014). A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer immunology, immunotherapy63, 1061-1071.
  53. Poirot, L., Philip, B., Schiffer-Mannioui, C., Le Clerre, D., Chion-Sotinel, I., Derniame, S., ... & Smith, J. (2015). Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer research75(18), 3853-3864.
  54. Rafiq, S., Hackett, C. S., & Brentjens, R. J. (2020). Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nature reviews Clinical oncology17(3), 147-167.
  55. Fraietta, J. A., Nobles, C. L., Sammons, M. A., Lundh, S., Carty, S. A., Reich, T. J., ... & Melenhorst, J. J. (2018). Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature558(7709), 307-312.