Document Type : Review Article

Authors

1 Department of biology, Faculty of science, Mashhad branch, Islamic Azad University, Mashhad, Iran

2 Department of biology, Faculty of science, Mashhad branch, Islamic Azad University, Mashhad, Iran.

10.22034/pmj.2024.712171

Abstract

Drug resistance in cancer is a major challenge to properly treating malignancy. Therapies aimed at proteins involved in cancer development may become less effective due to acquired resistance to medications, often resulting from mutations as well as heightened expression of the targeted proteins. Posttranslational modifications (PTMs) like as phosphorylation, methylation, ubiquitination, and acetylation are crucial for regulating protein expression levels. PROTACs are engineered to selectively degrade a specific protein of interest (POI) by ubiquitination, resulting in a regulated decrease in the POI’s expression. PROTACs show great potential in targeting hitherto untargetable proteins, such as various transcription factors. PROTACs enhance antitumor immune therapy by specifically modifying certain proteins. Although molecular therapies have advanced, lung cancer remains a major contributor to cancer-related mortality. The management of those with lung cancer is now limited by a lack of targeted therapy choices and the development of acquired drug resistance. Using the intracellular ubiquitin-proteasome system for directed protein breakdown might enhance individualized treatment for lung cancer patients. This study explores the rationale for using PROTAC therapy as an innovative specific therapy and the current advancements in PROTAC development for lung tumors.

Keywords

  1. Bade, B. C., & Cruz, C. S. D. (2020). Lung cancer 2020: epidemiology, etiology, and prevention. Clinics in chest medicine41(1), 1-24.
  2. Thandra, K. C., Barsouk, A., Saginala, K., Aluru, J. S., & Barsouk, A. (2021). Epidemiology of lung cancer. Contemporary Oncology/Współczesna Onkologia25(1), 45-52.
  3. Ganti, A. K., Klein, A. B., Cotarla, I., Seal, B., & Chou, E. (2021). Update of incidence, prevalence, survival, and initial treatment in patients with non–small cell lung cancer in the US. JAMA oncology7(12), 1824-1832.
  4. Leiter, A., Veluswamy, R. R., & Wisnivesky, J. P. (2023). The global burden of lung cancer: current status and future trends. Nature Reviews Clinical Oncology20(9), 624-639.
  5. Zhang, Y., Vaccarella, S., Morgan, E., Li, M., Etxeberria, J., Chokunonga, E., ... & Bray, F. (2023). Global variations in lung cancer incidence by histological subtype in 2020: a population-based study. The Lancet Oncology24(11), 1206-1218.
  6. Gockel, L. M., Pfeifer, V., Baltes, F., Bachmaier, R. D., Wagner, K. G., Bendas, G., ... & Steinebach, C. (2022). Design, synthesis, and characterization of PROTACs targeting the androgen receptor in prostate and lung cancer models. Archiv der Pharmazie355(5), 2100467.
  7. Petty, W. J., & Paz-Ares, L. (2023). Emerging strategies for the treatment of small cell lung cancer: a review. JAMA oncology9(3), 419-429.
  8. Liu, W. J., Du, Y., Wen, R., Yang, M., & Xu, J. (2020). Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacology & therapeutics206, 107438.
  9. Passaro, A., Brahmer, J., Antonia, S., Mok, T., & Peters, S. (2022). Managing resistance to immune checkpoint inhibitors in lung cancer: treatment and novel strategies. Journal of Clinical Oncology.
  10. Wang, K., & Zhou, H. (2021). Proteolysis targeting chimera (PROTAC) for epidermal growth factor receptor enhances anti‐tumor immunity in non‐small cell lung cancer. Drug Development Research82(3), 422-429.
  11. He, S., Ma, J., Fang, Y., Liu, Y., Wu, S., Dong, G., ... & Sheng, C. (2021). Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharmaceutica Sinica B11(6), 1617-1628.
  12. Li, J. W., Zheng, G., Kaye, F. J., & Wu, L. (2023). PROTAC therapy as a new targeted therapy for lung cancer. Molecular Therapy31(3), 647-656.
  13. Qi, S. M., Dong, J., Xu, Z. Y., Cheng, X. D., Zhang, W. D., & Qin, J. J. (2021). PROTAC: an effective targeted protein degradation strategy for cancer therapy. Frontiers in Pharmacology12, 692574.
  14. Qi, S. M., Dong, J., Xu, Z. Y., Cheng, X. D., Zhang, W. D., & Qin, J. J. (2021). PROTAC: an effective targeted protein degradation strategy for cancer therapy. Frontiers in Pharmacology12, 692574.
  15. Liu, J., Ma, J., Liu, Y., Xia, J., Li, Y., Wang, Z. P., & Wei, W. (2020, December). PROTACs: A novel strategy for cancer therapy. In Seminars in Cancer Biology(Vol. 67, pp. 171-179). Academic Press.
  16. Zhou, X., Dong, R., Zhang, J. Y., Zheng, X., & Sun, L. P. (2020). PROTAC: A promising technology for cancer treatment. European journal of medicinal chemistry203, 112539.
  17. Kelm, J. M., Pandey, D. S., Malin, E., Kansou, H., Arora, S., Kumar, R., & Gavande, N. S. (2023). PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy. Molecular Cancer22(1), 62.
  18. Kelm, J. M., Pandey, D. S., Malin, E., Kansou, H., Arora, S., Kumar, R., & Gavande, N. S. (2023). PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy. Molecular Cancer22(1), 62.
  19. Han, X., & Sun, Y. (2022). Strategies for the discovery of oral PROTAC degraders aimed at cancer therapy. Cell Reports Physical Science.
  20. Farnaby, W., Koegl, M., McConnell, D. B., & Ciulli, A. (2021). Transforming targeted cancer therapy with PROTACs: A forward-looking perspective. Current opinion in pharmacology57, 175-183.
  21. Békés, M., Langley, D. R., & Crews, C. M. (2022). PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery21(3), 181-200.
  22. Burke, M. R., Smith, A. R., & Zheng, G. (2022). Overcoming cancer drug resistance utilizing PROTAC technology. Frontiers in Cell and Developmental Biology10, 872729.
  23. Zhang, H. T., Peng, R., Chen, S., Shen, A., Zhao, L., Tang, W., ... & Zhang, L. (2022). Versatile Nano‐PROTAC‐Induced Epigenetic Reader Degradation for Efficient Lung Cancer Therapy. Advanced Science9(29), 2202039.
  24. Zhang, H., Zhao, H. Y., Xi, X. X., Liu, Y. J., Xin, M., Mao, S., ... & Zhang, S. Q. (2020). Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC). European Journal of Medicinal Chemistry189, 112061.
  25. Zhao, H. Y., Wang, H. P., Mao, Y. Z., Zhang, H., Xin, M., Xi, X. X., ... & Zhang, S. Q. (2022). Discovery of potent PROTACs targeting EGFR mutants through the optimization of covalent EGFR ligands. Journal of medicinal chemistry65(6), 4709-4726.
  26. Zhao, H. Y., Yang, X. Y., Lei, H., Xi, X. X., Lu, S. M., Zhang, J. J., ... & Zhang, S. Q. (2020). Discovery of potent small molecule PROTACs targeting mutant EGFR. European Journal of Medicinal Chemistry208, 112781.
  27. Zhao, H. Y., Wang, H. P., Mao, Y. Z., Zhang, H., Xin, M., Xi, X. X., ... & Zhang, S. Q. (2022). Discovery of potent PROTACs targeting EGFR mutants through the optimization of covalent EGFR ligands. Journal of medicinal chemistry65(6), 4709-4726.
  28. Du, Y., Chen, Y., Wang, Y., Chen, J., Lu, X., Zhang, L., ... & Zhang, G. (2022). HJM-561, a potent, selective, and orally bioavailable EGFR PROTAC that overcomes osimertinib-resistant EGFR triple mutations. Molecular Cancer Therapeutics21(7), 1060-1066.
  29. Shi, S., Du, Y., Zou, Y., Niu, J., Cai, Z., Wang, X., ... & Zhu, Q. (2022). Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. Journal of Medicinal Chemistry65(6), 5057-5071.
  30. Zhang, W., Li, P., Sun, S., Jia, C., Yang, N., Zhuang, X., ... & Li, S. (2022). Discovery of highly potent and selective CRBN-recruiting EGFRL858R/T790M degraders in vivo. European Journal of Medicinal Chemistry238, 114509.
  31. Li, K., & Crews, C. M. (2022). PROTACs: past, present and future. Chemical Society Reviews51(12), 5214-5236.
  32. Liu, J., Xue, L., Xu, X., Luo, J., & Zhang, S. (2021). FAK-targeting PROTAC demonstrates enhanced antitumor activity against KRAS mutant non-small cell lung cancer. Experimental Cell Research408(2), 112868.
  33. Hyun, S., & Shin, D. (2021). Small-molecule inhibitors and degraders targeting KRAS-driven cancers. International Journal of Molecular Sciences22(22), 12142.
  34. Yang, F., Wen, Y., Wang, C., Zhou, Y., Zhou, Y., Zhang, Z. M., ... & Lu, X. (2022). Efficient targeted oncogenic KRASG12C degradation via first reversible-covalent PROTAC. European Journal of Medicinal Chemistry230, 114088.
  35. Bond, M. J., Chu, L., Nalawansha, D. A., Li, K., & Crews, C. M. (2020). Targeted Degradation of Oncogenic KRASG12Cby VHL-Recruiting PROTACs. ACS central science6(8), 1367–1375.
  36. Jiang, Z., Li, Y., Zhou, X., Wen, J., Zheng, P., & Zhu, W. (2024). Research Progress on Small Molecule Inhibitors Targeting KRAS G12C with Acrylamide Structure and the Strategies for Solving KRAS Inhibitor Resistance. Bioorganic & Medicinal Chemistry, 117627.
  37. Yan, G., Zhong, X., Yue, L., Pu, C., Shan, H., Lan, S., ... & Li, R. (2021). Discovery of a PROTAC targeting ALK with in vivo activity. European Journal of Medicinal Chemistry212, 113150.
  38. Liu, J., Xue, L., Xu, X., Luo, J., & Zhang, S. (2021). FAK-targeting PROTAC demonstrates enhanced antitumor activity against KRAS mutant non-small cell lung cancer. Experimental Cell Research408(2), 112868.
  39. Gao, H., Zhang, J. Y., Zhao, L. J., & Guo, Y. Y. (2023). Synthesis and clinical application of small-molecule inhibitors and PROTACs of anaplastic lymphoma kinase. Bioorganic Chemistry, 106807.
  40. Xie S, Sun Y, Liu Y, Li X, Li X, Zhong W, Zhan F, Zhu J, Yao H, Yang DH, Chen ZS, Xu J, Xu S. Development of Alectinib-Based PROTACs as Novel Potent Degraders of Anaplastic Lymphoma Kinase (ALK). J Med Chem. 2021 Jul 8;64(13):9120-9140.
  41. Zhang, C., Han, X. R., Yang, X., Jiang, B., Liu, J., Xiong, Y., & Jin, J. (2018). Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). European journal of medicinal chemistry151, 304-314.
  42. Recondo, G., Mezquita, L., Facchinetti, F., Planchard, D., Gazzah, A., Bigot, L., ... & Friboulet, L. (2020). Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clinical Cancer Research26(1), 242-255.
  43. Song, X., Zhong, H., Qu, X., Yang, L., & Jiang, B. (2021). Two novel strategies to overcome the resistance to ALK tyrosine kinase inhibitor drugs: Macrocyclic inhibitors and proteolysis‐targeting chimeras. MedComm2(3), 341-350.
  44. Gao, H., Zheng, C., Du, J., Wu, Y., Sun, Y., Han, C., ... & Rao, Y. (2020). FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice. Protein & Cell11(7), 534-539.
  45. Liu, J., Xue, L., Xu, X., Luo, J., & Zhang, S. (2021). FAK-targeting PROTAC demonstrates enhanced antitumor activity against KRAS mutant non-small cell lung cancer. Experimental Cell Research408(2), 112868.
  46. Cromm, P. M., Samarasinghe, K. T., Hines, J., & Crews, C. M. (2018). Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. Journal of the American Chemical Society140(49), 17019-17026.
  47. Kurim, S. (2018). Towards Novel Effective Combination Therapy for KRAS Mutant Non-Small Cell Lung Cancer(Doctoral dissertation, Université d'Ottawa/University of Ottawa).
  48. Farnaby, W., Koegl, M., McConnell, D. B., & Ciulli, A. (2021). Transforming targeted cancer therapy with PROTACs: A forward-looking perspective. Current opinion in pharmacology57, 175-183.
  49. Webb, T., Craigon, C., & Ciulli, A. (2022). Targeting epigenetic modulators using PROTAC degraders: Current status and future perspective. Bioorganic & Medicinal Chemistry Letters63, 128653.
  50. Liu, J., Ma, J., Liu, Y., Xia, J., Li, Y., Wang, Z. P., & Wei, W. (2020, December). PROTACs: A novel strategy for cancer therapy. In Seminars in Cancer Biology(Vol. 67, pp. 171-179). Academic Press.
  51. Gao, H., Sun, X., & Rao, Y. (2020). PROTAC technology: opportunities and challenges. ACS medicinal chemistry letters11(3), 237-240.
  52. Li, X., & Song, Y. (2020). Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. Journal of hematology & oncology13(1), 1-14.
  53. Chen, X., Shen, H., Shao, Y., Ma, Q., Niu, Y., & Shang, Z. (2021). A narrative review of proteolytic targeting chimeras (PROTACs): future perspective for prostate cancer therapy. Translational Andrology and Urology10(2), 954.
  54. Burke, M. R., Smith, A. R., & Zheng, G. (2022). Overcoming cancer drug resistance utilizing PROTAC technology. Frontiers in Cell and Developmental Biology10, 872729.
  55. Zhou, X., Dong, R., Zhang, J. Y., Zheng, X., & Sun, L. P. (2020). PROTAC: A promising technology for cancer treatment. European journal of medicinal chemistry203, 112539.
  56. Wang, C., Zhang, Y., Xing, D., & Zhang, R. (2021). PROTACs technology for targeting non-oncoproteins: advances and perspectives. Bioorganic Chemistry114, 105109.
  57. Chen, C., Yang, Y., Wang, Z., Li, H., Dong, C., & Zhang, X. (2023). Recent Advances in Pro-PROTAC Development to Address On-Target Off-Tumor Toxicity. Journal of Medicinal Chemistry.
  58. Martín-Acosta, P., & Xiao, X. (2021). PROTACs to address the challenges facing small molecule inhibitors. European journal of medicinal chemistry210, 112993.
  59. Qi, S. M., Dong, J., Xu, Z. Y., Cheng, X. D., Zhang, W. D., & Qin, J. J. (2021). PROTAC: an effective targeted protein degradation strategy for cancer therapy. Frontiers in Pharmacology12, 692574.
  60. Li, Y., Song, J., Zhou, P., Zhou, J., & Xie, S. (2022). Targeting undruggable transcription factors with PROTACs: advances and perspectives. Journal of Medicinal Chemistry65(15), 10183-10194.