Document Type : Review Article


1 Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran

2 National Institute of Genetic Engineering and Biotechnology



Mitochondria are the extra-nuclear source of DNA in cells and play an important role in cell death susceptibility,  oxidative stress regulation, metabolism, and signaling in normal cells. Because of this, its dysfunction can contribute to the progression of cancer and metastasis. Also, mtDNA mutations have been reported in many cancers, followed by altered mitochondrial activity and cellular signaling . This increase in mtDNA mutation is due to the proximity of the genome to the OXPHOS system which are thought to be more in extent than mutation nuclear. These mutations do not inactivate energy metabolism but change its state. Therefore, it is not surprising that the function of mitochondria is vital for cancer cells, in addition to understanding the mechanisms of mitochondrial function in the process of tumor formation and cancer progression is essential for cancer treatments.


1.Chan, D.C., Mitochondrial fusion and fission in mammals. Annu.
Rev. Cell Dev. Biol., 2006. 22: p. 79-99.
2.Harada, H., et al., Phosphorylation and inactivation of BAD by
mitochondria-anchored protein kinase A. Molecular cell, 1999.
3(4): p. 413-422.
3.Li, N., et al., Mitochondrial complex I inhibitor rotenone induces
apoptosis through enhancing mitochondrial reactive oxygen
species production. Journal of Biological Chemistry, 2003.
278(10): p. 8516-8525.
4.Kaback, H., Electrochemical ion gradients and active transport.
Annals of the New York Academy of Sciences, 1980. 339(1):
p. 53-60.
5.Vafai, S.B. and V.K. Mootha, Mitochondrial disorders as windows
into an ancient organelle. Nature, 2012. 491(7424): p. 374-383.
6.Anderson, N.M., et al., The emerging role and targetability of the
TCA cycle in cancer metabolism. Protein & cell, 2018. 9(2): p.
7.Luft, R., et al., A case of severe hypermetabolism of nonthyroid
origin with a defect in the maintenance of mitochondrial
respiratory control: a correlated clinical, biochemical, and
morphological study. The Journal of clinical investigation,
1962. 41(9): p. 1776-1804.
8.DiMauro, S., Mitochondrial diseases. Biochimica et Biophysica
Acta (BBA)-Bioenergetics, 2004. 1658(1-2): p. 80-88.
9.Kroemer, G., N. Zamzami, and S.A. Susin, Mitochondrial control
of apoptosis. Immunology today, 1997. 18(1): p. 44-51.
10.Korsmeyer, S.J., et al., Reactive oxygen species and the regulation
of cell death by the Bcl-2 gene family. Biochimica et Biophysica
Acta (BBA)-Molecular Basis of Disease, 1995. 1271(1): p. 63-
11.M. Rudin, M., PhD, Charles and M. B. Thompson, Craig,
Apoptosis and disease: regulation and clinical relevance of
programmed cell death. Annual review of medicine, 1997.
48(1): p. 267-281.
12.Warburg, O., On the origin of cancer cells. Science, 1956.
123(3191): p. 309-314.
13.Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson,
Understanding the Warburg effect: the metabolic requirements
of cell proliferation. science, 2009. 324(5930): p. 1029-1033.
14.Oncology, A.S.o.C., American Society of Clinical Oncology
policy statement update: genetic testing for cancer susceptibility.
Journal of clinical oncology: official journal of the American
Society of Clinical Oncology, 2003. 21(12): p. 2397-2406.
15.Nass, M., The circularity of mitochondrial DNA. Proceedings
of the National Academy of Sciences of the United States of
America, 1966. 56(4): p. 1215.
16.Anderson, S., et al., Sequence and organization of the human
mitochondrial genome. Nature, 1981. 290(5806): p. 457-465.
17.Brown, W.M., M. George, and A.C. Wilson, Rapid evolution
of animal mitochondrial DNA. Proceedings of the National
Academy of Sciences, 1979. 76(4): p. 1967-1971.
18.Taylor, R.W. and D.M. Turnbull, Mitochondrial DNA mutations
in human disease. Nature Reviews Genetics, 2005. 6(5): p. 389-
19.Shadel, G.S. and D.A. Clayton, Mitochondrial DNA maintenance
in vertebrates. Annual review of biochemistry, 1997. 66(1): p.
20.Polyak, K., et al., Somatic mutations of the mitochondrial genome
in human colorectal tumours. Nature genetics, 1998. 20(3): p.
21.Nomoto, S., et al., Mitochondrial D-loop mutations as clonal
markers in multicentric hepatocellular carcinoma and plasma.
Clinical Cancer Research, 2002. 8(2): p. 481-487.
22.Jerónimo, C., et al., Mitochondrial mutations in early stage
prostate cancer and bodily fluids. Oncogene, 2001. 20(37): p.
23.Wallace, D.C., Mitochondrial diseases in man and mouse.
Science, 1999. 283(5407): p. 1482-1488.
24.Eng, C., et al., A role for mitochondrial enzymes in inherited
neoplasia and beyond. Nature Reviews Cancer, 2003. 3(3): p.
25.Petros, J.A., et al., mtDNA mutations increase tumorigenicity
in prostate cancer. Proceedings of the National Academy of
Sciences, 2005. 102(3): p. 719-724.
26.Gasparre, G., et al., Learning from oncocytic tumors: Why choose
inefficient mitochondria? Biochimica et Biophysica Acta
(BBA)-Bioenergetics, 2011. 1807(6): p. 633-642.
27.Singh, K.K., et al., Mitochondrial DNA determines the cellular
response to cancer therapeutic agents. Oncogene, 1999. 18(48):
p. 6641-6646.
28.Wu, C.W., et al., Mitochondrial DNA mutations and mitochondrial
DNA depletion in gastric cancer. Genes, Chromosomes and
Cancer, 2005. 44(1): p. 19-28.
29.Akouchekian, M., et al., High rate of mutation in mitochondrial
DNA displacement loop region in human colorectal cancer.
Diseases of the colon & rectum, 2009. 52(3): p. 526-530.
30.Akouchekian, M., et al., Analysis of mitochondrial ND1 gene
in human colorectal cancer. Journal of research in medical
sciences: the official journal of Isfahan University of Medical
Sciences, 2011. 16(1): p. 50.
31.Mohammed, F.M., E. Mosaieby, and M. Houshmand,
Mitochondrial A12308G alteration in tRNA Leu (CUN) in
colorectal cancer samples. Diagnostic pathology, 2015. 10(1):
p. 1-4.
32.Astuti, D., et al., Gene mutations in the succinate dehydrogenase
subunit SDHB cause susceptibility to familial pheochromocytoma
and to familial paraganglioma. The American Journal of Human
Genetics, 2001. 69(1): p. 49-54.
33.Wallace, D.C., Mitochondria and cancer. Nature Reviews Cancer,
2012. 12(10): p. 685-698.
34.Lightowlers, R.N., et al., Mammalian mitochondrial genetics:
heredity, heteroplasmy and disease. Trends in Genetics, 1997.
13(11): p. 450-455.
35.Beal, M.F., Mitochondria, free radicals, and neurodegeneration.
Current opinion in neurobiology, 1996. 6(5): p. 661-666.
MULTISTAGE CARCINOGENESIS. Oxygen radicals and the
disease process, 1998: p. 237.
37.Croteau, D.L. and V.A. Bohr, Repair of oxidative damage to
nuclear and mitochondrial DNA in mammalian cells. Journal of
Biological Chemistry, 1997. 272(41): p. 25409-25412.
38.Kumari, S., A.K. Badana, and R. Malla, Reactive oxygen species:
a key constituent in cancer survival. Biomarker insights, 2018.
13: p. 1177271918755391.
39.Nohl, H., et al., Cell respiration and formation of reactive oxygen
species: facts and artefacts. Biochemical Society Transactions,
2003. 31(6): p. 1308-1311.
40.Turrens, J.F. and A. Boveris, Generation of superoxide anion
by the NADH dehydrogenase of bovine heart mitochondria.
Biochemical journal, 1980. 191(2): p. 421-427.
41.Turrens, J.F., A. Alexandre, and A.L. Lehninger, Ubisemiquinone
is the electron donor for superoxide formation by complex III of
heart mitochondria. Archives of biochemistry and biophysics,
1985. 237(2): p. 408-414.
42.Turrens, J.F., Superoxide production by the mitochondrial
respiratory chain. Bioscience reports, 1997. 17(1): p. 3-8.
43.Galvan, D.L., N.H. Green, and F.R. Danesh, The hallmarks of
mitochondrial dysfunction in chronic kidney disease. Kidney
international, 2017. 92(5): p. 1051-1057.
44.Finkel, T., Signal transduction by mitochondrial oxidants. Journal
of Biological Chemistry, 2012. 287(7): p. 4434-4440.
45.Rimoin, D.L., et al., Emery and Rimoin’s principles and practice
of medical genetics. 2007: Churchill Livingstone Elsevier.
46.Tonks, N.K., Redox redux: revisiting PTPs and the control of cell
signaling. Cell, 2005. 121(5): p. 667-670.
47.Chandel, N.S., et al., Reactive oxygen species generated at
mitochondrial complex III stabilize hypoxia-inducible factor-
1α during hypoxia: a mechanism of O2 sensing. Journal of
Biological Chemistry, 2000. 275(33): p. 25130-25138.
48.Dasgupta, S., et al., Mitochondrial DNA mutations in respiratory
complex‐I in never‐smoker lung cancer patients contribute
to lung cancer progression and associated with EGFR gene
mutation. Journal of cellular physiology, 2012. 227(6): p. 2451-
49.Kulawiec, M., K.M. Owens, and K.K. Singh, mtDNA G10398A
variant in African-American women with breast cancer provides
resistance to apoptosis and promotes metastasis in mice. Journal
of human genetics, 2009. 54(11): p. 647-654.
50.Kamalidehghan, B., et al., ΔmtDNA4977 is more common in
non-tumoral cells from gastric cancer sample. Archives of
medical research, 2006. 37(6): p. 730-735.
51.Arbiser, J.L. Molecular regulation of angiogenesis and
tumorigenesis by signal transduction pathways: evidence of
predictable and reproducible patterns of synergy in diverse
neoplasms. in Seminars in cancer biology. 2004. Elsevier.
52.McCord, J.M., The evolution of free radicals and oxidative stress.
The American journal of medicine, 2000. 108(8): p. 652-659.
53.Gaude, E. and C. Frezza, Defects in mitochondrial metabolism
and cancer. Cancer & metabolism, 2014. 2(1): p. 1-9.
54.Sjöblom, T., et al., The consensus coding sequences of human
breast and colorectal cancers. science, 2006. 314(5797): p. 268-
55.Kang, M.R., et al., Mutational analysis of IDH1 codon 132 in
glioblastomas and other common cancers. International journal
of cancer, 2009. 125(2): p. 353-355.
56. Parsons, D.W., et al., An integrated genomic analysis of human
glioblastoma multiforme. science, 2008. 321(5897): p. 1807-
57.Mardis, E.R., et al., Recurring mutations found by sequencing
an acute myeloid leukemia genome. New England Journal of
Medicine, 2009. 361(11): p. 1058-1066.
58.Yan, H., et al., IDH1 and IDH2 mutations in gliomas. New
England journal of medicine, 2009. 360(8): p. 765-773.
59.Borger, D.R., et al., Circulating oncometabolite 2-hydroxyglutarate
is a potential surrogate biomarker in patients with isocitrate
dehydrogenase-mutant intrahepatic cholangiocarcinoma.
Clinical Cancer Research, 2014. 20(7): p. 1884-1890.
60.Liu, X., et al., Isocitrate dehydrogenase 2 mutation is a frequent
event in osteosarcoma detected by a multi‐specific monoclonal
antibody MsMab‐1. Cancer medicine, 2013. 2(6): p. 803-814.
61.Dang, L., et al., Cancer-associated IDH1 mutations produce
2-hydroxyglutarate. Nature, 2009. 462(7274): p. 739-744.
62.Ward, P.S., et al., The common feature of leukemia-associated
IDH1 and IDH2 mutations is a neomorphic enzyme activity
converting α-ketoglutarate to 2-hydroxyglutarate. Cancer cell,
2010. 17(3): p. 225-234.
63.Losman, J.-A., et al., (R)-2-hydroxyglutarate is sufficient to
promote leukemogenesis and its effects are reversible. Science,
2013. 339(6127): p. 1621-1625.
64.Baysal, B.E., et al., Mutations in SDHD, a mitochondrial complex
II gene, in hereditary paraganglioma. Science, 2000. 287(5454):
p. 848-851.
65.Ricketts, C., et al., Germline SDHB mutations and familial renal
cell carcinoma. Journal of the National Cancer Institute, 2008.
100(17): p. 1260-1262.
66.Janeway, K.A., et al., Defects in succinate dehydrogenase in
gastrointestinal stromal tumors lacking KIT and PDGFRA
mutations. Proceedings of the National Academy of Sciences,
2011. 108(1): p. 314-318.
67.Kim, S., W.-H. Jung, and J.S. Koo, Succinate dehydrogenase
expression in breast cancer. SpringerPlus, 2013. 2(1): p. 1-12.
68.Selak, M.A., et al., Succinate links TCA cycle dysfunction to
oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer
cell, 2005. 7(1): p. 77-85.
69.Yang, M. and P.J. Pollard, Succinate: a new epigenetic hacker.
Cancer cell, 2013. 23(6): p. 709-711.
70.Letouzé, E., et al., SDH mutations establish a hypermethylator
phenotype in paraganglioma. Cancer cell, 2013. 23(6): p. 739-
71.Tomlinson, I.P., et al., Germline mutations in FH predispose to
dominantly inherited uterine fibroids, skin leiomyomata and
papillary renal cell cancer. Nature genetics, 2002. 30(4): p. 406.
72.Khalil, A.A., Biomarker discovery: a proteomic approach for
brain cancer profiling. Cancer science, 2007. 98(2): p. 201-213.
73.Fieuw, A., et al., Identification of a novel recurrent 1q42.
2‐1qter deletion in high risk MYCN single copy 11q deleted
neuroblastomas. International journal of cancer, 2012. 130(11):
p. 2599-2606.
74.Sudarshan, S., et al., Reduced expression of fumarate hydratase
in clear cell renal cancer mediates HIF-2α accumulation and
promotes migration and invasion. PLoS One, 2011. 6(6): p.
75.Zheng, L., et al., Reversed argininosuccinate lyase activity
in fumarate hydratase-deficient cancer cells. Cancer &
metabolism, 2013. 1(1): p. 1-11.
76.Isaacs, J.S., et al., HIF overexpression correlates with biallelic
loss of fumarate hydratase in renal cancer: novel role of
fumarate in regulation of HIF stability. Cancer cell, 2005. 8(2):
p. 143-153.
77.Ooi, A., et al., An antioxidant response phenotype shared between
hereditary and sporadic type 2 papillary renal cell carcinoma.
Cancer cell, 2011. 20(4): p. 511-523.
78.Yeung, S., J. Pan, and M.-H. Lee, Roles of p53, MYC and HIF-1 in
regulating glycolysis—the seventh hallmark of cancer. Cellular
and molecular life sciences, 2008. 65(24): p. 3981-3999.
79.Li, F., et al., Myc stimulates nuclearly encoded mitochondrial
genes and mitochondrial biogenesis. Molecular and cellular
biology, 2005. 25(14): p. 6225-6234.
80.Dang, C., The interplay between MYC and HIF in the Warburg
effect. Oncogenes Meet Metabolism, 2008: p. 35-53.
81.Dang, C.V., et al., Oncogenes in tumor metabolism, tumorigenesis,
and apoptosis. Journal of bioenergetics and biomembranes,
1997. 29(4): p. 345-354.
82.Denko, N.C., Hypoxia, HIF1 and glucose metabolism in the solid
tumour. Nature Reviews Cancer, 2008. 8(9): p. 705-713.
83.Schwartzenberg-Bar-Yoseph, F., M. Armoni, and E. Karnieli,
The tumor suppressor p53 down-regulates glucose transporters
GLUT1 and GLUT4 gene expression. Cancer research, 2004.
64(7): p. 2627-2633.
84.Kawauchi, K., et al., p53 regulates glucose metabolism through
an IKK-NF-κB pathway and inhibits cell transformation. Nature
cell biology, 2008. 10(5): p. 611-618.
85.Bensaad, K., et al., TIGAR, a p53-inducible regulator of glycolysis
and apoptosis. Cell, 2006. 126(1): p. 107-120.
86.Sciacovelli, M., et al., The metabolic alterations of cancer cells.
Methods in enzymology, 2014. 542: p. 1-23.
87.Jones, N.P. and A. Schulze, Targeting cancer metabolism–aiming
at a tumour’s sweet-spot. Drug discovery today, 2012. 17(5-6):
p. 232-241.
88.Cheng, J.Q., et al., Amplification of AKT2 in human pancreatic
cells and inhibition of AKT2 expression and tumorigenicity
by antisense RNA. Proceedings of the National Academy of
Sciences, 1996. 93(8): p. 3636-3641.
89.Buzzai, M., et al., The glucose dependence of Akt-transformed
cells can be reversed by pharmacologic activation of fatty acid
β-oxidation. Oncogene, 2005. 24(26): p. 4165-4173.
90.Kalyanaraman, B., et al., A review of the basics of mitochondrial
bioenergetics, metabolism, and related signaling pathways in
cancer cells: Therapeutic targeting of tumor mitochondria with
lipophilic cationic compounds. Redox biology, 2018. 14: p. 316-
91.Ward, P.S. and C.B. Thompson, Metabolic reprogramming: a
cancer hallmark even warburg did not anticipate. Cancer cell,
2012. 21(3): p. 297-308.
92.Hardie, D.G. and M.L. Ashford, AMPK: regulating energy
balance at the cellular and whole body levels. Physiology, 2014.
29(2): p. 99-107.
93.Cunningham, J.T., et al., mTOR controls mitochondrial oxidative
function through a YY1–PGC-1α transcriptional complex.
nature, 2007. 450(7170): p. 736-740.
94.Tan, Z., et al., The role of PGC1α in cancer metabolism and its
therapeutic implications. Molecular cancer therapeutics, 2016.
15(5): p. 774-782.
95.LaGory, E.L., et al., Suppression of PGC-1α is critical for
reprogramming oxidative metabolism in renal cell carcinoma.
Cell reports, 2015. 12(1): p. 116-127.
96.Lamb, R., et al., Mitochondria as new therapeutic targets for
eradicating cancer stem cells: Quantitative proteomics and
functional validation via MCT1/2 inhibition. Oncotarget, 2014.
5(22): p. 11029.
97.Sancho, P., et al., MYC/PGC-1α balance determines the metabolic
phenotype and plasticity of pancreatic cancer stem cells. Cell
metabolism, 2015. 22(4): p. 590-605.
98.Özdemir, A.T., et al., The paracrine immunomodulatory
interactions between the human dental pulp derived
mesenchymal stem cells and CD4 T cell subsets. Cellular
Immunology, 2016. 310: p. 108-115.
99.Tsujimoto, Y., et al., Cloning of the chromosome breakpoint of
neoplastic B cells with the t (14; 18) chromosome translocation.
Science, 1984. 226(4678): p. 1097-1099.
100.Beroukhim, R., et al., The landscape of somatic copy-number
alteration across human cancers. Nature, 2010. 463(7283): p.
101.Garzon, R., et al., MicroRNA 29b functions in acute myeloid
leukemia. Blood, The Journal of the American Society of
Hematology, 2009. 114(26): p. 5331-5341.
102.Martinou, I., et al., The release of cytochrome c from
mitochondria during apoptosis of NGF-deprived sympathetic
neurons is a reversible event. The Journal of cell biology, 1999.
144(5): p. 883-889.
103.Gama, V., et al., The E3 ligase PARC mediates the degradation
of cytosolic cytochrome c to promote survival in neurons and
cancer cells. Science signaling, 2014. 7(334): p. ra67-ra67.
104.Lopez, J. and S. Tait, Mitochondrial apoptosis: killing cancer
using the enemy within. British journal of cancer, 2015. 112(6):
p. 957-962.
105.Cho, Y.M., et al., Mesenchymal stem cells transfer mitochondria
to the cells with virtually no mitochondrial function but not with
pathogenic mtDNA mutations. PloS one, 2012. 7(3): p. e32778.
106.Moschoi, R., et al., Protective mitochondrial transfer from bone
marrow stromal cells to acute myeloid leukemic cells during
chemotherapy. Blood, The Journal of the American Society of
Hematology, 2016. 128(2): p. 253-264.
107.Guerra, F., A.A. Arbini, and L. Moro, Mitochondria and cancer
chemoresistance. Biochimica et Biophysica Acta (BBA)-
Bioenergetics, 2017. 1858(8): p. 686-699.
108.Berridge, M.V., C. Crasso, and J. Neuzil, Mitochondrial genome
transfer to tumor cells breaks the rules and establishes a new
precedent in cancer biology. Molecular & cellular oncology,
2018. 5(5): p. e1023929.
109.Furnish, M. and M.C. Caino, Altered mitochondrial trafficking
as a novel mechanism of cancer metastasis. Cancer Reports,
2020. 3(1): p. e1157.
110.Missiroli, S., et al., Cancer metabolism and mitochondria:
Finding novel mechanisms to fight tumours. EBioMedicine,
2020. 59: p. 102943.
111.Lee, J.J., et al., Inhibition of epithelial cell migration and Src/
FAK signaling by SIRT3. Proceedings of the National Academy
of Sciences, 2018. 115(27): p. 7057-7062.