Document Type : Review Article

Authors

1 Department of Biology, College of Science, University of Duhok, Duhok,Iraq.

2 Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

Abstract

Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is a vital process for large-scale cell movement during morphogenesis at the time of embryonic development. Tumor cells usurp this developmental program to execute the multi-step process of tumorigenesis and metastasis. Understanding the biological intricacies of the EMT may provide important insights that lead to the development of therapeutic targets in pre-invasive and invasive breast cancer, and could be used as biomarkers for identifying tumor subsets with greater chances of recurrence, metastasis, and therapeutic resistance leading to death. The purpose of this article is to investigate the association between EMT and breast cancer.

Keywords

1.Waks AG, Winer EP. Breast cancer treatment: a review. Jama. 2019 Jan 22;321(3):288-300.
2.Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy. 2019;11:151.
3.Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention. Nature Reviews Cancer. 2020 Aug;20(8):417-36.
4.Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of mammary gland biology and neoplasia. 2010 Jun;15(2):253-60.
5.Gyamfi J, Lee YH, Eom M, Choi J. Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Scientific reports. 2018 Jun 11;8(1):1-3.
6.Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, Carra S, Cotelli F, Vitale G, Caretti G. SMYD3 promotes the epithelial–mesenchymal transition in breast cancer. Nucleic acids research. 2019 Feb 20;47(3):1278-93.
7.Olea-Flores M, Juárez-Cruz JC, Mendoza-Catalán MA, Padilla-Benavides T, Navarro-Tito N. Signaling pathways induced by leptin during epithelial–mesenchymal transition in breast cancer. International journal of molecular sciences. 2018 Nov;19(11):3493.
8.Scimeca M, Antonacci C, Colombo D, Bonfiglio R, Buonomo OC, Bonanno E. Emerging prognostic markers related to mesenchymal characteristics of poorly differentiated breast cancers. Tumor Biology. 2016 Apr;37(4):5427-35.
9.Yang F, Takagaki Y, Yoshitomi Y, Ikeda T, Li J, Kitada M, Kumagai A, Kawakita E, Shi S, Kanasaki K, Koya D. Inhibition of dipeptidyl peptidase-4 accelerates epithelial–mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR axis. Cancer research. 2019 Feb 15;79(4):735-46.
10.Sethi S, Sarkar FH, Ahmed Q, Bandyopadhyay S, Nahleh ZA, Semaan A, Sakr W, Munkarah A, Ali-Fehmi R. Molecular markers of epithelial-to-mesenchymal transition are associated with tumor aggressiveness in breast carcinoma. Translational Oncology. 2011 Aug 1;4(4):222-6.
11.Zhang N, Zhang H, Liu Y, Su P, Zhang J, Wang X, Sun M, Chen B, Zhao W, Wang L, Wang H. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death & Differentiation. 2019 May;26(5):843-59.
12.Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer cell. 2013 Mar 18;23(3):272-3.
13.Li GY, Wang W, Sun JY, Xin B, Zhang X, Wang T, Zhang QF, Yao LB, Han H, Fan DM, Yang AG. Long non-coding RNAs AC026904. 1 and UCA1: a “one-two punch” for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics. 2018;8(10):2846.
14.Hass R, von der Ohe J, Ungefroren H. Potential role of MSC/cancer cell fusion and EMT for breast cancer stem cell formation. Cancers. 2019 Oct;11(10):1432.
15.Khaled N, Bidet Y. New insights into the implication of epigenetic alterations in the EMT of triple negative breast cancer. Cancers. 2019 Apr;11(4):559.
16.Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 2009 Jun 1;119(6):1420-8.
17.He X, Xue M, Jiang S, Li W, Yu J, Xiang S. Fucoidan promotes apoptosis and inhibits emt of breast cancer cells. Biological and Pharmaceutical Bulletin. 2019 Mar 1;42(3):442-7.
18.Roussos ET, Keckesova Z, Haley JD, Epstein DM, Weinberg RA, Condeelis JS. AACR special conference on epithelial-mesenchymal transition and cancer progression and treatment.
19.Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, Yang J, Weinberg RA. Upholding a role for EMT in breast cancer metastasis. Nature. 2017 Jul;547(7661):E1-3.
20.Pires BR, Mencalha AL, Ferreira GM, de Souza WF, Morgado-Díaz JA, Maia AM, Corrêa S, Abdelhay ES. NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PloS one. 2017 Jan 20;12(1):e0169622.
21.Neelakantan D, Zhou H, Oliphant MU, Zhang X, Simon LM, Henke DM, Shaw CA, Wu MF, Hilsenbeck SG, White LD, Lewis MT. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nature communications. 2017 Jun 12;8(1):1-4.
22.Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell cycle. 2010 Jun 15;9(12):2363-74.
23.He X, Xue M, Jiang S, Li W, Yu J, Xiang S. Fucoidan promotes apoptosis and inhibits emt of breast cancer cells. Biological and Pharmaceutical Bulletin. 2019 Mar 1;42(3):442-7.
24.Huang P, Chen A, He W, Li Z, Zhang G, Liu Z, Liu G, Liu X, He S, Xiao G, Huang F. BMP-2 induces EMT and breast cancer stemness through Rb and CD44. Cell death discovery. 2017 Jul 17;3(1):1-2.
25.Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. Molecular cancer. 2010 Dec;9(1):1-7.
26.Lourenco AR, Ban Y, Crowley MJ, Lee SB, Ramchandani D, Du W, Elemento O, George JT, Jolly MK, Levine H, Sheng J. Differential contributions of pre-and post-EMT tumor cells in breast cancer metastasis. Cancer research. 2020 Jan 15;80(2):163-9.
27.Wang Z, Li Y, Kong D, H Sarkar F. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Current drug targets. 2010 Jun 1;11(6):745-51.
28.Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I, Karsan A. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. The Journal of experimental medicine. 2007 Nov 26;204(12):2935-48.
29.Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, Wang Y, Gu S, Zhao X. Notch1 signaling regulates the epithelial–mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Molecular cancer. 2015 Dec;14(1):1-7.
30.Suman S, Das TP, Damodaran C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. British journal of cancer. 2013 Nov;109(10):2587-96.
31.Hui M, Cazet A, Nair R, Watkins DN, O’Toole SA, Swarbrick A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Research. 2013 Apr;15(2):1-4.
32.Kolliopoulos C, Lin CY, Heldin CH, Moustakas A, Heldin P. Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer. Matrix Biology. 2019 Jul 1;80:29-45.
33.Addison JB, Voronkova MA, Fugett JH, Lin CC, Linville NC, Trinh B, Livengood RH, Smolkin MB, Schaller MD, Ruppert JM, Pugacheva EN. Functional hierarchy and cooperation of EMT master transcription factors in breast cancer metastasis. Molecular Cancer Research. 2021 May 1;19(5):784-98.
34.Maroufi NF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M, Rashidi MR. Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. European Journal of Pharmacology. 2020 Aug 15;881:173282.
35.Yin S, Cheryan VT, Xu L, Rishi AK, Reddy KB. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells. PloS one. 2017 Aug 17;12(8):e0183578.
36.Feng XH, Derynck R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol.. 2005 Nov 10;21:659-93.
37.Massagué J. TGFβ signalling in context. Nature reviews Molecular cell biology. 2012 Oct;13(10):616-30.
38.Drago-García D, Espinal-Enríquez J, Hernández-Lemus E. Network analysis of EMT and MET micro-RNA regulation in breast cancer. Scientific reports. 2017 Oct 19;7(1):1-7.
39.Wu HT, Zhong HT, Li GW, Shen JX, Ye QQ, Zhang ML, Liu J. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. Journal of translational medicine. 2020 Dec;18(1):1-0.
40.Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Molecular oncology. 2011 Feb 1;5(1):5-23.
41.Micalizzi DS, Ford HL. Epithelial–mesenchymal transition in development and cancer. Future oncology. 2009 Oct;5(8):1129-43.
42.Hass R, von der Ohe J, Ungefroren H. Potential role of MSC/cancer cell fusion and EMT for breast cancer stem cell formation. Cancers. 2019 Oct;11(10):1432.
43.Mego M, Mani SA, Cristofanilli M. Molecular mechanisms of metastasis in breast cancer—clinical applications. Nature reviews Clinical oncology. 2010 Dec;7(12):693-701.
44.Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. Journal of mammary gland biology and neoplasia. 2010 Jun;15(2):117-34.
45.Kar R, Jha NK, Jha SK, Sharma A, Dholpuria S, Asthana N, Chaurasiya K, Singh VK, Burgee S, Nand P. A “NOTCH” deeper into the epithelial-to-mesenchymal transition (EMT) program in breast cancer. Genes. 2019 Dec;10(12):961.
46.Papadaki MA, Kallergi G, Zafeiriou Z, Manouras L, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S. Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC cancer. 2014 Dec;14(1):1-0.
47.Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Research. 2011 Jun;13(3):1-1.
48.Peng Y, Li H, Fu Y, Guo S, Qu C, Zhang Y, Zong B, Liu S. JAM2 predicts a good prognosis and inhibits invasion and migration by suppressing EMT pathway in breast cancer. International immunopharmacology. 2022 Feb 1;103:108430.
49.Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, Cheng C. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. The Journal of clinical investigation. 2011 Mar 1;121(3):1064-74.
50.Bill R, Christofori G. The relevance of EMT in breast cancer metastasis: Correlation or causality?. FEBS letters. 2015 Jun 22;589(14):1577-87.
51.Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. The Journal of clinical investigation. 2009 Jun 1;119(6):1429-37.
52.Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, Yang J, Weinberg RA. Upholding a role for EMT in breast cancer metastasis. Nature. 2017 Jul;547(7661):E1-3.
53.Khaled N, Bidet Y. New insights into the implication of epigenetic alterations in the EMT of triple negative breast cancer. Cancers. 2019 Apr;11(4):559.
54.Rhodes LV, Martin EC, Segar HC, Miller DF, Buechlein A, Rusch DB, Nephew KP, Burow ME, Collins-Burow BM. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015 Jun 30;6(18):16638.
55.Creighton CJ, Gibbons DL, Kurie JM. The role of epithelial–mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer management and research. 2013;5:187.
56.Neelakantan D, Zhou H, Oliphant MU, Zhang X, Simon LM, Henke DM, Shaw CA, Wu MF, Hilsenbeck SG, White LD, Lewis MT. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nature communications. 2017 Jun 12;8(1):1-4.
57.Yu J, Xie F, Bao X, Chen W, Xu Q. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer. Molecular cancer. 2014 Dec;13(1):1-2.
58.Xiang Y, Liao XH, Yu CX, Yao A, Qin H, Li JP, Hu P, Li H, Guo W, Gu CJ, Zhang TC. MiR-93-5p inhibits the EMT of breast cancer cells via targeting MKL-1 and STAT3. Experimental cell research. 2017 Aug 1;357(1):135-44.
59.Yu J, Xie F, Bao X, Chen W, Xu Q. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer. Molecular cancer. 2014 Dec;13(1):1-2.
60.Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Current opinion in cell biology. 2018 Dec 1;55:30-5.